
R

EDK Concepts, Tools, and
Techniques

A Hands-On Guide to Effective
Embedded System Design

XTP013 EDK 10.1

2 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

R

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of
designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right,
at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the
Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or
assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES,
WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL
XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS
OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© 2002–2008 Xilinx, Inc. All rights reserved.

XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are
the property of their respective owners.

Revision History
The following table shows the revision history for this document.

Date Version Revision

01/01/07 9.1i Book release for EDK 9.1i.

09/05/07 9.2i Book release for EDK 9.2i.

11/05/07 10.1 Book release for ISE Unified 10.1 release.

9/18/08 10.1 Book release for ISE v10.1 SP3 release.

R

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 3
XTP013 EDK 10.1

Preface: About This Guide
Additional Resources . 7
Conventions . 8

Typographical . 8
Online Document . 8

Chapter 1: Introduction
Welcome . 9

Additional Documentation . 9
How EDK Simplifies Embedded Processor Design . 9

Integrated Software Environment . 10
Embedded Development Kit . 10

How Do the Tools Expedite the Design Process? . 11
Before Starting . 11

Chapter 2: Creating a New Project
The Base System Builder (BSB) . 13

Why Should I Use BSB?. 13
What You Can Do in the BSB Wizard . 13

Note on BSB and Custom Boards . 19
What’s Next? . 19

Chapter 3: Xilinx Platform Studio
What is XPS? . 21
The XPS GUI. 21

Project Information Area. 22
System Assembly View . 26
Console Window . 29

XPS Tools . 29
XPS Directory Structure . 30

Directories . 30
What’s Next? . 31

Chapter 4: The Embedded Hardware Platform
What’s in a Hardware Platform? . 33
Hardware Platform Development in Xilinx Platform Studio. 33

The MHS File . 33
The Hardware Platform in System Assembly View . 34
What’s Next? . 35

Table of Contents

http://www.xilinx.com

4 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

R

Chapter 5: Creating Your Own Intellectual Property (IP)
IP Creation Overview . 37

How to Do It: Use the CIP Wizard! . 37
The Create and Import Peripheral Wizard . 38

What You Need to Know Before Running the CIP Wizard . 38
What Just Happened? . 40

What’s Next? . 48

Chapter 6: The Software Platform and SDK
Board Support Package. 49
MSS File and Other Software Platform Elements . 49
Platform Studio Software Development Kit . 50

Adding Test Software for Your Custom IP . 51
Returning to XPS to Complete Your Project . 54
What’s Next? . 56

Chapter 7: Introduction to Simulation in XPS
Before You Begin . 57
Why Simulate an Embedded Design?. 57
EDK Simulation Basics. 58
Simulation Considerations . 58

Global Settings to Specify . 58
System Behavior and Improving Simulation Times . 59

Helper Scripts. 59
Restrictions . 59

Simulation Setup . 59
Running Simulation . 60

Chapter 8: Implementing and Downloading Your Design
Implementing the Design . 65
Netlist Generation Review . 65

Chapter 9: Debugging the Design
Xilinx MicroProcessor Debugger . 72
SDK Software Debugger . 73
ChipScope Pro Tools . 73
Platform Debug . 74

Overview . 74
Hardware and Software Co-Debug. 75

Appendix A: More About BFM Simulation

Appendix B: Glossary

http://www.xilinx.com

5 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 1: Introduction
Figure 1-1: Basic Embedded Design Process Flow. 11

Chapter 2: Creating a New Project

Chapter 3: Xilinx Platform Studio
Figure 3-1: Xilinx Platform Studio User Interface . 22
Figure 3-2: Project Information Area, Project Tab . 23
Figure 3-3: Project Information Area, Applications Tab . 24
Figure 3-4: Project Information Area, IP Catalog Tab . 25
Figure 3-5: System Assembly View Contents . 26
Figure 3-6: XPS Startup Flow Diagram . 28
Figure 3-7: BSB Wizard-Created Directories and Files . 31

Chapter 4: The Embedded Hardware Platform
Figure 4-1: MHS File . 34

Chapter 5: Creating Your Own Intellectual Property (IP)
Figure 5-1: PLB Slave/Burst Module in a Custom Peripheral . 41
Figure 5-2: Directory Structure Generated by the CIP Wizard . 42
Figure 5-3: Relationship of IP Module to Generated Files. 42
Figure 5-4: User_logic.vhd Template File . 43
Figure 5-5: XPS BFM User PCORE Simulation Project. 44
Figure 5-6: BFM Waveform Simulation Results for sample.bfl @ t=640 ns 45
Figure 5-7: Relaunching XPS from the ISE Project Navigator. 46

Chapter 6: The Software Platform and SDK
Figure 6-1: Elements and Stages of ELF File Generation . 50
Figure 6-2: Platform Studio SDK Project Creation Wizard . 51
Figure 6-3: Importing test_ip Software Files. 52
Figure 6-4: Sample Software Template Created by the CIP Wizard 52
Figure 6-5: File Search Dialog . 53
Figure 6-6: Code Insertion for TestApp_Peripheral.c File . 53
Figure 6-7: XPS ELF File Management Option . 55
Figure 6-8: Project Setting for BRAM Initialization . 56

Chapter 7: Introduction to Simulation in XPS
Figure 7-1: FPGA Design Simulation Stages . 58

Schedule of Figures

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 6
XTP013 EDK 10.1

R

Figure 7-2: Ports Tab with proc_sys_reset_0 block Expanded . 60
Figure 7-3: TestApp_Peripheral - Reading GPIO Peripheral 62
Figure 7-4: Simulation Output Results for test_ip . 63

Chapter 8: Implementing and Downloading Your Design
Figure 8-1: Elements and Stages of Generating a Hardware Netlist 66
Figure 8-2: Elements and Stages of Generating a Hardware Bitstream 66
Figure 8-3: Sample User Constraints File . 67
Figure 8-4: Generating the Embedded System Bitstream. 68
Figure 8-5: Elements and Stages of XPS and EDK Leading to FPGA Configuration . . . 69

Chapter 9: Debugging the Design
Figure 9-1: XMD PowerPC System Connection . 72
Figure 9-2: XMD MicroBlaze System Connection . 72
Figure 9-3: Debug Configuration Wizard . 74
Figure 9-4: Debug Configuration Wizard Automatic Connections 76
Figure 9-5: Open Cable/Search JTAG Chain Icon . 78
Figure 9-6: ChipScope Pro Logic Analyzer Waveform Setup . 78
Figure 9-7: ChipScope Trigger and Match Units . 79

Appendix A: More About BFM Simulation
Figure A-1: BFM Directory and Files . 81

Appendix B: Glossary

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 7
XTP013 EDK 10.1

R

Preface

About This Guide

This guide explains the basics of the EDK embedded design flow, tools architecture, and
concepts behind the EDK design process. It also provides an opportunity for you try out
the EDK tools through a series of Test Drives, during which you build a sample project.

Guide contents include:

• Chapter 1, Introduction

• Chapter 2, Creating a New Project

• Chapter 3, Xilinx Platform Studio

• Chapter 4, The Embedded Hardware Platform

• Chapter 5, Creating Your Own Intellectual Property (IP)

• Chapter 6, The Software Platform and SDK

• Chapter 7, Introduction to Simulation in XPS

• Chapter 8, Implementing and Downloading Your Design

• Chapter 9, Debugging the Design

• Appendix A, More About BFM Simulation

• Appendix B, Glossary

Additional Resources
To find additional EDK documentation, see:

www.xilinx.com/ise/embedded/edk_docs.htm

To search the Answers Database for silicon, software, and IP questions and answers, or to
create a technical support WebCase, see:

www.xilinx.com/support/mysupport.htm

http://www.xilinx.com
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com/support/mysupport.htm

8 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Preface: About This Guide
R

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical

This document uses the following typographical conventions:

Online Document

The following conventions are used in this document:

Convention Meaning or Use Example

Courier font
Messages, prompts, and program
files that the system displays

speed grade: - 100

Courier bold
Literal commands that you enter
in a syntactical statement

ngdbuild design_name

Helvetica bold

Commands that you select from a
menu

File > Open

Keyboard shortcuts Ctrl+C

Italic font

References to other manuals
See the Development System
Reference Guide for more
information.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol, the
two nets are not connected.

Square brackets []

An optional entry or parameter.
However, in bus specifications,
such as bus[7:0], they are
required.

ngdbuild [option_name]
design_name

Braces { } A list of items from which you
must choose one or more

lowpwr ={on|off}

Vertical bar | Separates items in a list of choices lowpwr ={on|off}

Vertical ellipsis
.
.
.

Repetitive material that has been
omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . .
Repetitive material that has been
omitted

allow block block_name loc1
loc2 ... locn;

Convention Meaning or Use Example

Blue text
Cross-reference link to a location
in the current document

See the section “Additional
Resources” for details.

Refer to “Title Formats” in
Chapter 1 for details.

Blue, underlined text Hyperlink to a Website (URL)
Go to http://www.xilinx.com for
the latest speed files.

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 9
XTP013 EDK 10.1

R

Chapter 1

Introduction

Welcome
The Xilinx Embedded Development Kit (EDK) is a suite of tools and Intellectual Property
(IP) that enables you to design a complete embedded processor system for implementation
in a Xilinx Field Programmable Gate Array (FPGA) device.

This guide describes the design flow for developing a custom embedded processing
system using EDK. Some background information is provided, but the main focus is on the
features of EDK and their use.

Read this document if:

• you need an introduction to EDK and its utilities.

• it has been a while since you’ve designed an embedded processor system.

• you are installing the Xilinx EDK tools.

• you need a quick reference while designing a processor system.

Note: This guide is written based on Windows operating system. The behavior or the graphical user
interface (GUI) on a Linux system may vary slightly.

Take a Test Drive!
Because the best way to learn a software tool is to use it, this document provides
opportunities for you to work with the tools described in this guide. Specifications and
instructions for creating a sample project are provided in various Take a Test Drive!
sections as you go along. These test drives also include information about what happens
when you run automated functions. Test Drives are indicated by the car icon, shown at
start of this paragraph.

Additional Documentation

Additional documentation about the Xilinx EDK is available at:
www.xilinx.com/ise/embedded/edk_docs.html

Documentation about the Xilinx Integrated Software Environment® (ISE) is available at:
www.xilinx.com/support/software_manuals.htm.

How EDK Simplifies Embedded Processor Design
Embedded systems are somewhat complex. Getting the hardware and software portions of
an embedded design to work are projects in themselves. Merging the two design
components so they function as one system brings additional challenges. Add an FPGA

http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

10 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 1: Introduction
R

design project to the mix, and the situation has the potential to become very confusing
indeed.

Components of EDK To simplify the design process, Xilinx offers several sets of tools. It is a good idea to get to
know these basic tool names, project file names, acronyms, and abbreviations. To make this
easier for you, we have included a Glossary of EDK-specific terms at the end of this guide.

Integrated Software Environment

The Integrated Software Environment (ISE) is the foundation for Xilinx FPGA logic design.
Because FPGA design can also be an involved process, Xilinx has provided software
development tools that allow you to simplify some of this complexity. Various utilities,
such as constraints entry, timing analysis, logic placement and routing, and device
programming have all been integrated into ISE. For more helpful information about using
the Xilinx ISE® tools for FPGA design see:
www.xilinx.com/support/software_manuals.htm.

Embedded Development Kit

The Embedded Development Kit (EDK) is a suite of tools and Intellectual Property (IP) that
enables you to design a complete embedded processor system for implementation in a
Xilinx FPGA device. Think of it as an umbrella covering all things related to embedded
processor systems and their design. The Xilinx ISE software must also be installed to run
EDK.

Xilinx Platform Studio

The Xilinx Platform Studio (XPS) is the development environment or GUI used for
designing the hardware portion of your embedded processor system.

Software Development Kit

Platform Studio Software Development Kit (SDK) is an integrated development
environment, complimentary to XPS, that is used for C/C++ embedded software
application creation and verification. SDK is built on the Eclipse™ open-source
framework, so this software development tool might appear familiar to you or members of
your design team.

Other EDK Components

Following is a list of some of the other EDK elements.

• Hardware IP for the Xilinx embedded processors

• Drivers and libraries for embedded software development

• GNU Compiler and debugger for C/C++ software development targeting the
MicroBlaze™ and PowerPC™ processors

• Documentation

• Sample projects

The utilities provided with EDK are designed to assist in all phases of the embedded
design process.

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 11
XTP013 EDK 10.1

How Do the Tools Expedite the Design Process?
R

How Do the Tools Expedite the Design Process?
Figure 1-1 shows the simplified flow for an embedded design.

Embedded System
Overview

The following is an overview of how these tools work together to simplify the design
process.

• The recommend design flow is to begin with an ISE project, and then to add an
embedded processor source to the ISE project.

• XPS is used primarily for embedded processor hardware system development.
Configuration of the microprocessor, peripherals, and the interconnection of these
components, along with their respective property assignments, takes place in XPS.

• SDK is the recommended software development environment for simple and complex
software applications. While basic software development can be accomplished within
XPS, this capability will be removed in a future release.

• Verifying the correct functionality of your hardware platform can be accomplished by
running the design through a Hardware Description Language (HDL) simulator. XPS
facilitates three types of simulation:

♦ Behavioral

♦ Structural

♦ Timing-accurate

XPS automatically sets up the verification process structure, including HDL files for
simulation. You will only have to enter clock timing and reset stimulus information,
along with any application code.

For more information about the embedded design process as it relates to XPS, see “Design
Process Overview” in the Embedded Systems Tools Reference Manual, available at:
www.xilinx.com/ise/embedded/edk_docs.htm.

Before Starting

Before we start discussing the tools in depth, it would be a good idea to make sure they are
installed properly and that the environments you have set up match those you need to
follow the instructions in the Take a Test Drive sections in this guide.

X-Ref Target - Figure 1-1

Figure 1-1: Basic Embedded Design Process Flow

Software
Development

Software
Development

Kit (SDK)

Hardware
Development

Verification External
Simulator

Device
Configuration

ISE

Xilinx Platform Studio (XPS)

http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com

12 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 1: Introduction
R

Installation Requirements: What You Need to Run EDK Tools

EDK Installation
Requirements

Xilinx ISE

Several utilities in EDK use functionality that is delivered with tools contained in ISE. So,
to use the EDK tools, you first need to have ISE installed. Be sure you have also installed
the latest ISE service pack as well. To obtain information and product downloads for the
ISE software, go to www.xilinx.com/support/download/index.htm.

Bash Shell for Linux

If you are running EDK on a Linux platform, you need a bash shell. Also, be sure to check
out the supported platforms covered in the Xilinx document Getting Started with the EDK,
available at: www.xilinx.com/ise/embedded/edk_docs.htm.

Software Registration ID

You’ll need a software registration ID to install EDK. You can get one online at:
www.xilinx.com/products/design_resources/design_tool/index.htm.

EDK Installation

Exact installation instructions vary, depending upon whether the software was obtained
from an electronic download or on a DVD. For detailed installation instructions, please
refer to the ISE 10.1 Release Notes and Installation Guide.

You can fine more information about EDK installation online at:
www.xilinx.com/ise/embedded/edk_docs.htm.

Note: ISE and EDK major versions must be the same. For example, if you are installing EDK version
10.1, you must also install ISE version 10.1.

Installation Requirements for Simulation

To perform simulation using the EDK tools, you must have the following steps completed:

1. An IP-Protect capable simulator (ModelSim® PE/SE v6.3c or Mentor Graphics® IUS
v6.1) is required for the simulation steps.

2. Install the CoreConnect™ Toolkit. CoreConnect is a free utility provided by IBM®. You
can download CoreConnect from the Xilinx website at:
www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=dr_pcent
ral_coreconnect.

After you make the appropriate selections on the web page to order and register, you
will have access to the download.

Note: The CoreConnect toolkit is only required if you are going to perform Bus Functional
Model (BFM) Simulations. If you do not intend to run BFM simulations, you do not need to install
the CoreConnect toolkit.

3. Compile the simulation libraries (if you haven’t already done so), following the
procedure outlined in the EDK help system available in XPS or on the Xilinx web page
under “Xilinx Platform Studio Help Topics” at
www.xilinx.com/ise/embedded/edk_docs.htm.

a. If you are opening the help from XPS, select Help > Help Topics.

b. Navigate to Procedures for Embedded Processor Design > Simulation >
Compiling Simulation Libraries in XPS > Compiling Simulation Libraries in XPS.

For additional information about the installation process, see Getting Started with EDK at:
www.xilinx.com/ise/embedded/edk_docs.htm.

http://www.xilinx.com/support/download/index.htm
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com/products/design_resources/design_tool/index.htm
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=dr_pcentral_coreconnect
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=dr_pcentral_coreconnect
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://toolbox.xilinx.com/docsan/xilinx10/books/docs/irn/irn.pdf
http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 13
XTP013 EDK 10.1

R

Chapter 2

Creating a New Project

Now that you’ve been introduced to EDK, let’s begin looking at how to use these tools to
develop an embedded system.

The Base System Builder (BSB)

About BSB
BSB is a wizard that quickly and efficiently establishes a working design, which you can
then customize.

At the end of this section, you will have the opportunity to begin your first Test Drive,
using BSB to create a project.

Why Should I Use BSB?

Xilinx® recommends using the BSB Wizard to create the foundation for any new
embedded design project. BSB may be all you need to create your design, but if more
customization is required, BSB saves you a lot of time because it automates basic hardware
and software platform configuration tasks common to most processor designs. After
running the wizard, you have a working project that contains all the basic elements needed
to build a more customized or complex system, should that be necessary.

What You Can Do in the BSB Wizard

Using the BSB Wizard, you can create your project file, choose a board, select and configure
a processor and I/O interfaces, add internal peripherals, set up software, and generate a
system summary report.

BSB recognizes the system components and configurations on the selected board and
provides the options appropriate to your selections.

Creating Your Top-level Project File (*.xmp)

The Xilinx
Microprocessor
Project (*.xmp) file

A Xilinx Microprocessor Project (XMP) file is the top-level file description of the embedded
system under development. All XPS project information is saved in the XMP file, including
the location of the Microprocessor Hardware Specification (MHS) and Microprocessor
Software Specification (MSS) files. The MHS and MSS files are described in detail later in
this tutorial.

The XMP file also contains information about C source and header files that XPS is to
compile, as well as any executable files that the Software Development Kit (SDK) compiles.
The project also includes the FPGA architecture family and the device type for which the
hardware tool flow must be run.

File creation includes the option to apply settings from another project you have created
with the BSB.

http://www.xilinx.com

14 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 2: Creating a New Project
R

Selecting a Board Type

BSB allows you to select a board type from a list or to create a custom board.

Supported Boards

Selecting a Board
Type

If you are targeting one of the supported embedded processor development boards
available from Xilinx or from one of our partners, BSB lets you choose from the peripherals
available on that board, automatically match the FPGA pinout to the board, and create a
completed platform and test application that is ready to download and run on the board.
Each option has functional default values that are pre-selected in XPS. This base-level
project can be further enhanced in XPS, or can be implemented using the Xilinx
implementation utilities provided by ISE.

Upon initial installation of EDK, only Xilinx board files are installed. If you want to target
a third party board, you must add the necessary board support files. The BSB Select Board
screen contains a link that assists you in finding third party board support files. After the
files are installed, the BSB drop-down menus display those boards as well.

Custom Boards

If you are developing a design for a custom board, BSB lets you select and interconnect one
of the available processor cores (MicroBlaze or PowerPC, depending on your selected
target FPGA device) with a variety of compatible and commonly used peripheral cores
from the IP library. This gives you a hardware system to use as a starting point. You can
add more processors and peripherals if needed. The utilities provided in XPS assist with
this, including the creation of custom peripherals.

Selecting and Configuring a Processor
Processors You can choose a MicroBlaze or PowerPC processor and select:

Selecting and Configuring Multiple I/O Interfaces

Multiple I/O
Interfaces

BSB understands the external memory and I/O devices available on your predefined
board and allows you to select the following, as appropriate to a given device:

• Which devices to use

• Baud rate

• Peripheral type

• Number of data bits

• Parity

• Whether or not to use interrupts

For your convenience, data sheets for external memory and I/O devices can be opened
from within the wizard.

• Architecture type
• Device type
• Package
• Speed grade
• Reference clock frequency

• Processor-bus clock frequency
• Reset polarity
• Processor configuration for debug
• Cache setup
• Floating Point Unit (FPU) setting

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 15
XTP013 EDK 10.1

The Base System Builder (BSB)
R

Adding Internal Peripherals
Additional Internal
Peripherals

BSB allows you to add additional peripherals. There is a caveat, however: the peripherals
are supported by the selected board and FPGA device architecture. For a custom board,
only certain peripherals are available for general selection and automatic system
connection.

Setting Up Software

Standard input and output devices can be specified in BSB, and you can select sample C
applications that you would like XPS to generate. Each application includes a linker script.
The sample applications from which you can select include a memory test, peripheral test,
or both.

Viewing a System Summary Page

After you have made your selections in the wizard, BSB displays a system summary page.
At this point, you can choose to generate the project, or you can go back to any previous
wizard screen and revise the settings.

It should be noted that while this guide is using the Xilinx ML507 Development Board and
targeting the PowerPC 440 processor, other recent boards could just as easily be used. If the
board does not have an FPGA with a PowerPC-class processor (PowerPC 440 or PowerPC
405), MicroBlaze can be used for most of the Test Drives in this guide. Some behavior may
vary slightly, but the discussions and exercises will still be of value.

Take a Test Drive!
To run BSB Wizard, you need to first start the ISE Project Navigator, and create a project
with an embedded processor system as the top level.

1. Start ISE Project Navigator.

2. Select File > New Project. This launches the New Project Wizard.

http://www.xilinx.com

16 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 2: Creating a New Project
R

3. Use the information listed in the table below to make your selections in the Wizard
screens.

Note: After running through the ISE Project Navigator new project wizard, it will recognize that you
have an embedded processor system, and will start Platform Studio with the message This project
appears to be a blank project. Do you want to create a Base System using the BSB Wizard? (This can
take a few moments.) Click Yes.

Now that the BSB wizard has started, you can create a project using the settings described
in the table below.

Wizard Screen System Property Setting or Command to Use

Create New Project • Project Name
• Project Location
• Top-level source type

• Choose a name for your project (do
not use spaces).

• Choose a location for your project.
• Select HDL (default).
• Click Next.

Device Properties • Product Category
• Family
• Device
• Package
• Speed
• Synthesis Tool
• Simulator
• Preferred Language

• All
• Virtex®-5
• XC5VFX70T
• FF1136
• -1
• XST (VHDL/VERILOG)
• User-specific
• VHDL
• Accept other defaults and click

Next.

Create New Source • Click New Source.

Select Source Type In the menu tree in the left
pane, click Embedded
Processor.

• Enter system in File name field
• Click Next
• Click Finish
• Click Yes
• Click Next

Add existing sources Do not add anything. • Click Next.

Project Summary • Click Finish.

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 17
XTP013 EDK 10.1

The Base System Builder (BSB)
R

Note: If no setting or command is indicated in the table below, accept the default values.

Wizard Screens System Property Setting or Command to Use

Welcome to the
Base System
Builder

Project type options • Select the option to create a new
design.

Select Board Board vendor and name • Choose Xilinx as your board vendor.
• Select the Virtex-5 ML507

Evaluation Platform.

The ML507 board contains a
Virtex®-5 FXT device, which means
BSB allows you to select either a
MicroBlaze or PowerPC soft
processor core.

• Select Board Revision A (default)

Select Processor Processor type • Select PowerPC.

Configure
PowerPC Processor

• Clock frequencies

• Processor configuration,
Debug I/F

• Use defaults.

• Choose FPGA JTAG. (default)
This means that the JTAG pins will
also be used for processor debug.
NOTE: Cache and FPU settings should be
disabled (left blank).

Configure IO
Interfaces
(four screens)

Xilinx-provided IP selections • Select RS232_UART_1
• RS232_Uart_1, select

XPS_UART_16550. Accept the new
defaults that appear.

• Select Push_Buttons_Position_5Bit.

For this project, deselect all other
options.
NOTE: IP that must be purchased is
displayed with an accompanying lock
symbol. You can evaluate the IP for a period
of time, but it must be purchased to continue
working in your design.

Add Internal
Peripherals

Default is
XPS_BRAM_IF_CNTLR
with an 8 KB memory size.

• Select 16 KB memory size.

http://www.xilinx.com

18 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 2: Creating a New Project
R

Software Setup • Software setup

In the BSB software setup
screen you specify how
you would like to use
your system. BSB can also
set up any software tests
you would like to create.

• Boot memory

• Memory and peripheral
tests

The software tests send
or receive information to
selected peripherals. The
microprocessor
interprets the status of
the peripherals and
reports it via the
STDIN/STDOUT
peripheral

• For the STDIN and STDOUT
devices, select RS232_Uart.

• Select xps_bram_if_cntlr_1

• Use default application tests.

Configure Memory
Test Application

Instruction, Data, and
Stack/Heap memory
locations

• For this project, place all of these in
xps_bram_if_cntlr_1.

This specifies that the program code
operates out of the block RAM
contained in the FPGA (xps_bram)
using the BRAM controller
(_if_cntlr_1).

Configure
Peripheral Test
Application

Same as above Same as above.

Wizard Screens System Property Setting or Command to Use

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 19
XTP013 EDK 10.1

Note on BSB and Custom Boards
R

Note on BSB and Custom Boards
If you plan to create a project that includes a custom board, you must create a Xilinx Board
Description file (*.xbd) for your custom board library and place it in the
$XILINX_EDK/board location. For more information, see "Xilinx Board Description
(XBD)" in the Platform Specification Format Reference Manual, available at
www.xilinx.com/support/documentation/dt_edk_edk10-1.htm.

What’s Next?
In the next chapter, you will learn how you can view and modify your new project in XPS.

System Created System summary page After you have selected and configured
all your system components, BSB
displays an overview of the system,
allowing you to verify your selections.

• You should have PowerPC440
running at 125 MHz, buses running
at 125 MHz with 16KB of on chip
memory.

• You should have the following
attached components: an
xps_bram_if_cntlr, an
xps_uart16550, and an xps_gpio.

You can go back to any previous wizard
dialog and make revisions.

BSB creates a default memory map. The
memory map cannot be modified
inside BSB, but it can be changed after
BSB is closed.

• After reviewing the system
summary (and making any changes
needed), click Generate.

Finish During design generation,
the directory structure of
your system is created. The
HDL and other files are
populated with the choices
you made in BSB, and
connections between the
processor, busses, and
peripherals are handled,
and any additional logic is
instantiated.

• Click Finish.

A message dialog will appear with
information about how to manage the
constraints generated for this system.
After reading this message, click OK to
close the dialog.

Wizard Screens System Property Setting or Command to Use

http://www.xilinx.com/support/documentation/dt_edk_edk10-1.htm
http://www.xilinx.com

20 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 2: Creating a New Project
R

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 21
XTP013 EDK 10.1

R

Chapter 3

Xilinx Platform Studio

Now that you have created a baseline project with BSB, it’s time to take a look at the
options available in Xilinx Platform Studio (XPS). Using XPS, you will be able to build on
the project you created with BSB. This chapter takes you on a tour of XPS. Subsequent
chapters in the document discuss how to use XPS to modify your design.

Note: Taking the tour of XPS provided in this chapter is recommended. It will enable you to more
easily follow the rest of this book and other documentation on XPS.

What is XPS?
XPS includes a graphical user interface (GUI), along with a set of tools that aid in project
design. This chapter describes the XPS GUI and some of the most commonly used tools.

The XPS GUI
From the XPS GUI, you can design a complete embedded processor system for
implementation within a Xilinx FPGA device. The XPS main window is shown in
Figure 3-1.

Using the XPS User
Interface

Note that the XPS main window is divided into these three areas.

• Project Information Area

• System Assembly View

• Console Window

http://www.xilinx.com

22 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 3: Xilinx Platform Studio
R

Optional Test Drives are provided in this chapter so you can explore the information and
tools available in each of the XPS main window areas.

Project Information Area

The Project Information Area offers control over and information about your project. The
Project Information Area includes Project, Applications, and IP Catalog tabs.

Project Tab

The Project Tab, shown in Figure 3-2, lists references to project-related files. Information is
grouped in the following general categories:

• Project Files

All project-specific files such as the Microprocessor Hardware Specification (MHS)
files, Microprocessor Software Specification (MSS) files, User Constraints File (UCF)
files, iMPACT Command files, Implementation Option files, and Bitgen Option files.

• Project Options

All project-specific options, such as Device, Netlist, Implementation, Hardware
Description Language (HDL), and Sim Model options.

• Reference Files

All log and output files produced by the XPS implementation processes.

X-Ref Target - Figure 3-1

Figure 3-1: Xilinx Platform Studio User Interface

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 23
XTP013 EDK 10.1

The XPS GUI
R

Applications Tab

The Applications tab, shown in Figure 3-3, lists all software application option settings,
header files, and source files that are associated with each application project. With this tab
selected, you can:

• create and add a software application project, build the project, and load it to the
block RAM.

• set compiler options.

• add source and header files to the project.

Note: While XPS allow you to create and manage software projects, SDK is the recommended tool
for all software development. The software development capabilities in XPS will be removed in a
future release.

Figure 3-2: Project Information Area, Project Tab

http://www.xilinx.com

24 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 3: Xilinx Platform Studio
R

IP Catalog Tab

The IP Catalog tab (Figure 3-4), lists all the EDK IP cores and any custom IP cores you
created.

If a project is open, only those IP cores that are compatible with the target Xilinx device
architecture are displayed. The catalog lists information about the IP cores, including
release version, status (active, early access or deprecated), lock (not licensed, locked, or
unlocked), processor support, and a short description.

Additional details about the IP core, including the version change history, data sheet, and
the Microprocessor Peripheral Description (MPD) file, are available from the right-click
menu. By default, the IP cores are grouped hierarchically by function.

Figure 3-3: Project Information Area, Applications Tab

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 25
XTP013 EDK 10.1

The XPS GUI
R

Note: You may have to click and drag to expand the pane to view all IP details.

Take a Test Drive!
1. In the XPS GUI, Click the Project tab.

Notice that right-clicking an item under Project Files lets you open it in XPS and that
right-clicking an item under Project Options allows you to open the Project Options
dialog.

You can close the open project file by right-clicking the tab for that file, and selecting
Close.

2. Click the Applications tab.

a. Collapse the Project: TestApp_Memory (using the +/- box) entry.

b. Expand the four sub-headers below Project: TestApp_Peripheral.

- Under Processor: ppc440_0, note the xparameters.h file.

The xparameters.h file contains the system address map and is an integral
part of the Board Support Package (BSP). If you have been following the
previous Test Drive steps, the BSP has not been generated yet, so this file is
unavailable.

- Under Compiler Options and Sources, note that both a linker script and test
application executables were automatically generated by the BSB Wizard
when the selected test applications were created.

3. Click the IP Catalog tab.

a. Find the Communication Low-Speed IP category and expand it.

X-Ref Target - Figure 3-4

Figure 3-4: Project Information Area, IP Catalog Tab

http://www.xilinx.com

26 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 3: Xilinx Platform Studio
R

b. Locate the XPS_UART (16550-Style) peripheral and right-click to view the PDF
data sheet for the XPS_UART (16550-Style).

Note the option to select a flat or hierarchical view.

c. Click the directories icon circled in Figure 3-5 to switch between the two views.

System Assembly View

The System Assembly View allows you to view and configure system block elements. If the
System Assembly View is not already maximized in the main window, click the System
Assembly View tab at the bottom of the pane to open it.

Bus Interface, Ports, and Address Filters

XPS provides Bus Interface, Ports, and Addresses tabs in the System Assembly View
(Figure 3-5), to organize information about your design and allow you to more easily edit
your hardware platform.

Connectivity Panel

With the Bus Interfaces tab selected, you’ll see the Connectivity Panel, (labeled in the figure
above). The Connectivity Panel is a graphical representation of the hardware platform
interconnects.

• A vertical line represents a bus, and a horizontal line represents a bus interface to an
IP core.

• If a compatible connection can be made, a connector is displayed at the intersection
between the bus and IP core bus interface.

• The lines and connectors are color-coded to show bus compatibility.

• Differently shaped connection symbols indicate whether IP blocks are bus masters or
bus slaves.

• A hollow connector represents a connection that you can make, and a filled connector
represents a connection made. To create or disable a connection, click the connector
symbol.

X-Ref Target - Figure 3-5

Figure 3-5: System Assembly View Contents

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 27
XTP013 EDK 10.1

The XPS GUI
R

Information Viewing and Sorting

To allow you to sort information and revise your design more easily, the System Assembly
View provides two view options: hierarchical view and flat view.

Hierarchical and Flat Views

Hierarchical view is the default in the System Assembly View. In the hierarchical view, the
information about your design is based on the IP core instances in your hardware platform
and organized in an expandable or collapsible tree structure.

When you click the directory structure icon (circled in Figure 3-5), the ports are displayed
either hierarchically or in a flattened, or flat, view. The flat view allows you to sort
information in the System Assembly View alphanumerically by any column.

Expanded or Collapsed Nodes

The +/- icon expands or collapses all nets or buses associated with an IP to allow quick
association of a net with the IP elements.

Take a Test Drive!
In System Assembly View, click the Ports tab (located at the top of the screen).

1. Expand the External Ports category to view the signals that are present outside the
FPGA device.

2. Note the signal names in the Net column and find the signals related to the
RS232_Uart_1. (You may need to drag the right side of the Net column header to see
its entire contents.) These are referenced in the next step. Collapse this category when
finished.

3. Scroll down to locate the RS232_Uart peripheral and expand it.

Note the Net names and how they correspond to the names that were present as
external signals. The RX and TX net from the UART are name-associated with the
external ports.

4. Right-click the RS232_Uart_1 peripheral icon and select Configure IP to launch the
RS232_Uart_1:xps_uart16550_v2_00_a parameters dialog. You can use the
parameters dialog for any peripheral to adjust various settings available for the IP.
Take a moment and observe what happens when you hover the cursor over a
parameter name. Note the three top buttons and the tabs available for this core. Close
this dialog when finished.

5. Click the directories icon (circled in Figure 3-5), and switch between the hierarchical
and flat views.

Platform Studio Tab

In the same space as the System Assembly View, there is a Platform Studio tab. The
Platform Studio tab display (Figure 3-6) provides an embedded design flow diagram, with
links to related help topics.

http://www.xilinx.com

28 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 3: Xilinx Platform Studio
R

If at any point you are not sure what to do next, or need more information on how to
perform a process, you can refer to this diagram for a quick update.
X-Ref Target - Figure 3-6

Figure 3-6: XPS Startup Flow Diagram

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 29
XTP013 EDK 10.1

XPS Tools
R

Take a Test Drive!
Note: If you can’t see the Platform Studio tab, select Help > View Startup Flow Diagram.

1. With the Platform Studio tab selected, try clicking the Software Development,
Hardware Development, and FPGA Device Configuration headings.

You may find it interesting to read the help-topic overviews for these parts of the
design flow. You can navigate the HTML using the green arrows in the tool bar. Or, you
can go to View > Toolbars > HTML Browser.

2. Try clicking the Hardware Development topic Begin by using the Base System Builder.

This presents material with which you might now be familiar, after reading Chapter 2,
“Creating a New Project.”

Console Window

The Console window (Figure 3-2, page 23) provides feedback from the tools invoked
during runtime. Notice the three tabs: Output, Warning, and Error.

XPS Tools
In addition to the GUI, XPS includes all the underlying tools needed to develop the
hardware and software components of an embedded processor system.

These include the following.
XPS Tools for
Building Hardware
and Software
Components

• The Base System Builder (BSB) Wizard, for creating new projects. The BSB dialog that
appears on XPS start-up is also available from the tool bar.

Click File > New Project.

• The Hardware Platform Generation tool (Platgen), for generating the embedded
processor system. To start Platgen, click Hardware > Generate Netlist.

• The Simulation Model Generation tool (Simgen) generates simulation models of your
embedded hardware system based either on your original embedded hardware
design (behavioral) or finished FPGA implementation (timing-accurate).

Click Simulation > Generate Simulation HDL Files to start Simgen.

• The Create and Import Peripheral Wizard helps you create your own peripherals and
import them into EDK-compliant repositories or XPS projects.

To start the wizard, click Hardware > Create or Import Peripheral.

• The Library Generation tool (Libgen) configures libraries, device drivers, file systems,
and interrupt handlers for the embedded processor system, creating a software
platform.

Click Software > Generate Libraries and BSPs to start Libgen.

Note: Libgen will be removed in a future version of XPS software.

• The Xilinx Platform Studio Software Development Kit (SDK) is a complementary
interface to XPS and provides a development environment for software application
projects.

Click Software > Launch Platform Studio SDK to open SDK. For your convenience,
SDK has its own user interface to expedite software design tasks.

http://www.xilinx.com

30 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 3: Xilinx Platform Studio
R

Take a Test Drive!

• Take a look at all the options that are available under the Hardware, Software, and
Simulation items (located in the top menu bar).

XPS Directory Structure
For the Test Drive design you have begun, BSB has automated the project directory
structure setup and started what can be considered a simple but complete project. The time
savings that BSB provides during platform configuration can be negated, however, if you
don’t understand what the tools are doing behind the scene. Let’s take a look at the
directory structure BSB created and see how it could be useful as project development
progresses.

Note: These files are stored in the location where you created your project file.

Directories

BSB automatically creates four primary directories, listed below. These directories are also
shown in Figure 3-7.

There are two directories that contain the BSB-generated test application C-source code,
header files, and linker scripts, which were explored in an earlier Test Drive.

Underneath the main project directory you will also find a few files. Those of interest are
shown in Figure 3-7 and are described as follows.

_ _xps Contains intermediate files generated by XPS and other tools
for internal project management. You will not use this
directory.

data Contains the user constraints file (UCF). For more
information on this file and how to use it, see the ISE UCF
help topics at:
www.xilinx.com/support/software_manuals.htm.

etc Contains files that capture the options used to run various
tools. This directory is empty because no actions outside of
BSB have been performed.

pcores Used for including custom hardware peripherals.

system.xmp This is the top-level project design file. XPS reads this file
and graphically displays its contents in the XPS user
interface.

system.mhs The system microprocessor hardware specification, or
MHS file, captures textually the system elements, their
parameters, and connectivity. The MHS file is the
hardware foundation for your project.

system.mss The system microprocessor software specification, or
MSS file, captures the software portion of the design,
describing textually the system elements and various
software parameters associated with the peripheral. The
MSS file is the software foundation for your project.

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 31
XTP013 EDK 10.1

What’s Next?
R

The MHS and MSS files can be thought of as the main products of the XPS GUIs. Your
entire hardware and software system are represented by these two files.

Take a Test Drive!
1. Using a file explorer utility (such as Internet Explorer), navigate to the top-level

directory for your project.

2. Open the various subdirectories and become familiar with the basic file set.

What’s Next?
Now that you know your way around XPS, you’re ready to begin working with the project
you started in Chapter 2, “Creating a New Project.” We will begin with the hardware
platform.

Figure 3-7: BSB Wizard-Created Directories and Files

http://www.xilinx.com

32 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 3: Xilinx Platform Studio
R

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 33
XTP013 EDK 10.1

R

Chapter 4

The Embedded Hardware Platform

What’s in a Hardware Platform?
The embedded hardware platform includes one or more processors, along with a variety of
peripherals and memory blocks. These blocks of IP use an interconnect network to
communicate. Additional ports connect to the “outside world.” The behavior of each
processor or peripheral core can be customized. Implementation parameters control
optional features and specify what is ultimately implemented in the FPGA. The
implementation parameters also define the addresses for your system.

Hardware Platform Development in Xilinx Platform Studio

About the
Microprocessor
Hardware
Specification file

XPS provides an interactive development environment that allows you to specify all
aspects of your hardware platform. XPS maintains your hardware platform description in
a high-level form, known as the Microprocessor Hardware Specification (MHS) file. The
MHS, an editable text file, and is the principal source file representing the hardware
component of your embedded system. XPS synthesizes the MHS source file into Hardware
Description Language (HDL) netlists ready for FPGA place and route.

The MHS File

The MHS file is integral to your design process. It contains all peripheral instantiations
along with their parameters. The MHS file defines the configuration of the embedded
processor system and includes information on the bus architecture, peripherals, processor,
connectivity, and address space. For more information about the MHS file, see the
“Microprocessor Hardware Specification (MHS)” chapter of the Platform Specification
Format Reference Manual, available at www.xilinx.com/ise/embedded/edk_docs.htm.

Because of its importance, let’s take a quick tour of the MHS file that was created when you
ran the BSB Wizard.

Take a Test Drive!
1. Select the Project tab in the Project Information Area.

Look under the Project Files heading to find MHS File: system.mhs, as shown in
Figure 4-1.

http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com

34 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 4: The Embedded Hardware Platform
R

2. Double-click the file name to open it.

3. Search for xps_uart16550 the system.mhs file.

Notice how the peripherals, their ports, and their parameters are configured in the
MHS file.

4. Take some time to review other IP cores in your design.

5. When you are finished, close the system.mhs file.

The Hardware Platform in System Assembly View
The System Assembly View in XPS displays all hardware platform IP instances using an
expandable tree and table format.

XPS provides extensive display customization, sorting, and data filtering capability so you
can easily review your embedded design. The IP elements, their ports, properties, and
parameters, which are configurable in the System Assembly View, are written directly to
the MHS file.

Using the System
Assembly View

Editing a port name or setting a parameter takes effect when you press Enter or click OK.
XPS automatically writes the system modification to the hardware database, which is
contained in the MHS file. The recommended method for editing the MHS file is to use the
System Assembly View.

Note: Adding, deleting, and customizing IP are discussed in Chapter 5, “Creating Your Own
Intellectual Property (IP).”

Generating the Hardware Platform

Generating the hardware platform is a two step process. First a netlist is generated, then a
bitstream is produced. The bitstream is the configuration file that gives the FPGA its
personality. The netlist is generated within XPS, the bitstream is built from within the ISE
Project Navigator GUI.

Netlist and Bitstream
Generation

Netlist Generation

When XPS is instructed to generate the netlist, it invokes the platform building tool,
Platgen, which performs the following.

♦ Reads the design platform configuration MHS file.

♦ Generates an HDL representation of the MHS file written to system.[vhd|v]
along with a system_stub.[vhd|v]. The system file is your MHS description
written in HDL format.

The file system_stub is a top-level HDL template file that is useful should you
want to instantiate your processor system as a component in a larger, HDL-based

Figure 4-1: MHS File

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 35
XTP013 EDK 10.1

What’s Next?
R

design. For more information about this process, see Appendix A, “Embedded
Submodule Design with ISE.”

♦ Synthesizes the design using Xilinx Synthesis Technology (XST).

♦ Produces a netlist file.

More information about PlatGen is available in the “Platform Generator (PlatGen)”
chapter in the Embedded System Tools Reference Manual, available at
www.xilinx.com/ise/embedded/edk_docs.htm.

Bitstream Generation

On successful completion of the Platgen process, the ISE Project Navigator GUI is used to
generate the bitstream. This GUI reads the netlist that was created and in conjunction with
the User Constraints File (UCF), they produce a BIT file containing the hardware design.
Software patterns, if any, are not part of that bitstream (they are added later in SDK). When
you use the BSB Wizard to create your initial hardware platform, it generates a UCF in the
XPA project data folder.

What’s Next?
Now you can start to customize your design. In the next chapter, you’ll add your own IP to
the Test Drive project.

http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com

36 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 4: The Embedded Hardware Platform
R

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 37
XTP013 EDK 10.1

R

Chapter 5

Creating Your Own Intellectual Property (IP)

Adding Custom Logic
to Your Design

So far, it has been fairly easy to develop an embedded system using XPS. Everything you
have done up to this point has amounted to a series of mouse clicks because XPS has
automated the process for you. Invariably, however, you will want to add some degree of
customization to achieve your design goals. But this doesn’t mean the process has to
become hopelessly complex and slow. Even when customizing a system, XPS allows you
to automate many steps that would otherwise be error-prone and time-consuming. That
said, adding some custom logic (IP) to your Test Drive system would be a good next step.
Let’s get into some real design!

IP Creation Overview
If you think back to the XPS overview (see Figure 3-1, page 22 and Figure 3-6, page 28), the
Bus Interface tab in System Assembly View shows connections among busses, processor,
and IP. Any piece of IP you create must be compliant with the system you are designing. To
ensure compliance, the following must occur:

1. The interface required by your IP must be determined.

The bus to which your custom peripheral will attach must be identified. For example:

Processor Local Bus
(PLB)

Fast Simplex Link
(FSL)

a. Processor Local Bus (PLB) version 4.6. The PLB provides a high-speed interface
between the processor and high-performance peripherals. PLB v4.6 is used in both
PowerPC and MicroBlaze processor systems.

b. Fast Simplex Link (FSL). The FSL is a point-to-point "FIFO-like" interface. It can be
used in MicroBlaze designs, but generally is not used in PowerPC systems.

2. Functionality must be implemented and verified.

Your custom functionality must be implemented and verified, with awareness that
common functionality available from the EDK peripherals library can be reused. Your
stand-alone core must be verified. Isolating the core ensures easier debug in the future.

3. The IP must be imported to EDK.

Your peripheral must be copied to an EDK-appropriate directory, and the Platform
Specification Format (PSF) interface files (MPD and PAO) must be created, so other
EDK tools can recognize your peripheral.

4. Your peripheral must be added to the processor system created in XPS.

How to Do It: Use the CIP Wizard!

You are probably saying to yourself, “This sounds complicated. How do I use XPS to make
all this happen?” Fortunately, XPS offers another useful wizard, the Create and Import
Peripheral (CIP) Wizard. The CIP Wizard assists with steps two and three above by
walking you through the IP creation process. It sets up a number of templates for you to
populate with proprietary logic. In addition to creating HDL templates, the CIP Wizard
creates a peripheral core (pcore) verification project for Bus Functional Model (BFM)

http://www.xilinx.com

38 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 5: Creating Your Own Intellectual Property (IP)
R

verification. The templates and the BFM project creation are great for jump starting your IP
development as well as ensuring your IP will comply with the system you created or will
create.

The Create and Import Peripheral Wizard
By asking a few simple questions, the Create and Import Peripheral (CIP) Wizard greatly
simplifies your custom peripheral creation process. Let’s walk through creating a blank
template for a piece of proprietary IP that you will design. For simplicity, most steps will
accept default values, but you will have a chance to see all the possible selections you can
make.

What You Need to Know Before Running the CIP Wizard

The wizard can create four types of PLB v4.6 peripherals using predefined IP interface
(IPIF) libraries.

Supported PLB v4.6
Peripherals

• PLB v4.6 Slave for single data beat transfer

• PLB v4.6 Slave for burst data transfer

• PLB v4.6 Master for single data beat transfer

• PLB v4.6 Master for burst data transfer

You can also enable the legacy PLB v3.4 and OPB buses in the CIP wizard by checking the
box Enable OPB and PLB v3.4 interfaces at the bottom of the Create Peripheral - Bus
Interface wizard screen.

PLB Bus

To learn more about the PLB v4.6 interface, review the following documents appropriate to
the bus to which your IP will connect:

$XILINX_EDK\doc\usenglish\mg_ug.pdf

$XILINX_EDK\doc\usenglish\sp026.pdf

Data Sheets

An easy way to find data sheets for a given element in the IP catalog is to right-click the
IP element and select View PDF Data Sheet.

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 39
XTP013 EDK 10.1

The Create and Import Peripheral Wizard
R

Take a Test Drive!
From the XPS menu bar, select Hardware > Create or Import Peripheral.

Create your new peripheral so that it has the characteristics described in the table below.
When in doubt about which value to enter, use the default value.

Wizard Screen Wizard Requested Input Value to Enter

Create Peripheral

Peripheral Flow
(Screen 1)

Select Flow. • Select the Create templates for a
new peripheral option to begin
creating your new IP. (default)

Repository or Project
(Screen 2)

Specify the location to
which you want to save
the peripheral.

• Select the To an XPS Project option
and browse to the location of the
current project. (This will likely be
pre-selected.)

Name and version
(Screen 3)

Peripheral name and
version number.

• Give the new peripheral the name
test_ip.

• Use the default version 1_00_a.

Bus Interface Bus type. Select Processor Local bus, PLB v4.6
(default).

IPIF Services IPIF services requested. • Under Slave service and
configuration enable all options,
except User logic memory space.

• Under Master service and
configuration leave the User logic
master unchecked.

Slave Interface Burst and cache-line
support.

Leave the burst and cache-line support
option unchecked.

FIFO Service FIFO services requested. Use defaults.

Interrupt Service Configure interrupt
handling.

Use defaults.

User S/W Register Software register
configuration.

Use defaults.

IP Interconnect (IPIC) IP interconnect (IPIC)
signals.

Use defaults. (The defaults should all
checked except the 3rd, 4th and 5th
boxes: Bus2IP_Addr, Bus2IP_CS and
Bus2IP_RNW.)

Note: You can click a signal name to
view information about a signal you might
want to adjust.

http://www.xilinx.com

40 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 5: Creating Your Own Intellectual Property (IP)
R

Note: For more information about the Create and Import Peripheral Wizards, see the XPS help
system (Help > Help Topics > Procedures for Embedded Processor Design > Creating and
Importing Peripherals).

You can get IP interface documentation at www.xilinx.com/ise/embedded/edk_ip.htm.

What Just Happened?

The wizard worked! But you’re probably not sure what it really produced. Let’s stop for a
moment and examine some concepts and the resulting output.

Intellectual Property Interface (IPIF)
EDK uses what is called PLB slave and burst peripherals to implement common
functionality among various processor peripherals. These PLB slave and burst peripherals
can act as bus masters or bus slaves. In the Bus Interface and IPIF Services Panel, the CIP
Wizard asked you to define the target bus and what services the IP would need. The
purpose here was to determine the PLB slave and burst peripheral elements your IP would
require.

The IP Interface The PLB slave and burst peripherals are verified, optimized, and highly parameterizable
interfaces. They also give you a set of simplified bus protocols. This is all IP Interconnect
(IPIC), which is much easier to work with when compared to operating on the PLB or FSL
bus protocols directly. Using the PLB slave and burst peripherals with parameterization
that suits your needs greatly reduces your design and test effort because you don’t have to
reinvent the wheel. Figure 5-1 illustrates the relationship between the bus, a simple PLB
slave peripheral, IPIC, and your user logic.

Peripheral Simulation
Support

Bus functional model
simulation.

• Click Generate BFM simulation
platform for <Your Simulator>
where Your Simulator will be either
ModelSim or NCSim.

Note: If either of the two following
conditions is not met, skip this step.

• You must have the BFM toolkit
installed, or you won’t be able to
select the BFM option.

• You must have ModelSim or NCSim
installed.

Peripheral
Implementation
Support

Peripheral
implementation support.

Use defaults.

Finish Create Peripheral, Finish. • Review the details contained in the
wizard screen text box. Note the
interrupt address range given.

• Click Finish.

Wizard Screen Wizard Requested Input Value to Enter

http://www.xilinx.com/ise/embedded/edk_ip.htm
http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 41
XTP013 EDK 10.1

The Create and Import Peripheral Wizard
R

Now, let’s draw a parallel between what the wizard created and the boxes shown in
Figure 5-1. The CIP Wizard created two template files that assist in IP connection. The top-
level file is given the name you entered: test_ip.vhd. The second file,
user_logic.vhd, is where your custom logic is to be connected.

A review of the directory structure and files that were created by the wizard reveals where
the above-mentioned and other key files reside. See the pcores directory in your example
project directory, shown in Figure 5-2.

Note: The list of files shown in Figure 5-2 is a partial list, and do not represent the full list of directory
files.

X-Ref Target - Figure 5-1

Figure 5-1: PLB Slave/Burst Module in a Custom Peripheral

http://www.xilinx.com

42 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 5: Creating Your Own Intellectual Property (IP)
R

Directory Structure
and Files Created by
the CIP Wizard

Let’s focus our attention on the two VHDL template files created by the wizard,
test_ip.vhd and user_logic.vhd, shown in Figure 5-2.

The user_logic file makes the connection to the PLB v4.6 bus via the PLB slave/burst
cores configured in test_ip.vhd. The user_logic.vhd file is equivalent to the
“Custom Functionality” block and the test_ip.vhd file is equivalent to the PLB
slave/burst blocks.

Figure 5-3 illustrates the relationship between the block diagram shown in Figure 5-1 and
the generated files shown in Figure 5-2.

Figure 5-2: Directory Structure Generated by the CIP Wizard

X-Ref Target - Figure 5-3

Figure 5-3: Relationship of IP Module to Generated Files

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 43
XTP013 EDK 10.1

The Create and Import Peripheral Wizard
R

What’s still lacking from both files is your proprietary logic.

Create and Import Peripheral Wizard Template Files

This summary of the interface provides the background you need to create some usable
proprietary logic. Let’s take a Test Drive to review the template files the Wizard has created
for you.

Take a Test Drive!
1. In XPS, select File > Open and navigate to the

pcores\test_ip_v1_00_a\hdl\vhdl directory.

Here you will find the test_ip.vhd file and the user_logic.vhd file. (See
Figure 5-2.)

2. Open the user_logic.vhd file.

3. Search for the value entity user_logic and find the occurrence that appears as
shown in Figure 5-4.

Note: A quick way to search for this value on a Windows platform is to use the search function
keys (Ctrl + F).

Wherever user information is required in the two template files (<ip core name>.vhd
and user_logic.vhd), you will find comments indicating the type of information
required and where to place it.

Because the templates create CoreConnect-compliant structures, you will not add any
additional logic to your Test Drive project. However, it would be a good idea to view the
bare interface setup and operation for future understanding.

Intellectual Property Bus Functional Model Simulation
Note: This is optional, but recommended.

Note: If you made no selections in the wizard screen for BFM simulation (see “Peripheral Simulation
Support,” page 40), skip to the Test Drive section “Running the CIP Wizard to Re-import test_ip into
Your XPS Project,” page 47.

The best thing you can do to understand BFM Simulation options is to explore the BFM
project created for you by the CIP Wizard. So, let’s take another Test Drive.

Figure 5-4: User_logic.vhd Template File

Insert User Value

http://www.xilinx.com

44 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 5: Creating Your Own Intellectual Property (IP)
R

Take a Test Drive!
Note: If, in the CIP Wizard, you selected the check box to create the BFMs, you must close your
XPS project before proceeding with the following steps.

If you elected to create the BFMs, the CIP Wizard created a sub-directory to your
\pcores\test_ip_v1_00_a\devl\ directory called bfmsim, in which it saved the
XPS BFM simulation project called bfm_system.xmp.

Open the project bfm_system.xmp from XPS. What you see will be similar to what is
shown in Figure 5-5.

1. Select Project > Project Options and click the HDL and Simulation tab.

2. Select the HDL format in which you would like to simulate. We will use the default,
VHDL.

3. Select the simulator you are using, either ModelSim or NCSim. We will use the default,
ModelSim.

4. You should have your EDK simulation libraries compiled and pointing to the proper
locations.

a. If so, open the Application Preferences dialog (select Edit > Preferences >
Application Preferences) and verify the location for the EDK and ISE libraries.

b. If you have not compiled these, click Simulation > Compile Simulation Libraries
and follow the steps given in the Simulation Library Compilation Wizard.
For more information regarding simulation library compilation, refer to the XPS
Help topic, Procedures for Embedded Processor Design > Simulation > Compiling
Simulation Libraries in XPS.

5. BFM only offers Behavioral Simulation, so leave the Simulation Model selection set to
its default.

6. Select OK when your have finished setting up the simulation options.

Simulation Model
Generator (Simgen)

7. Select Simulation > Generate Simulation HDL Files to run the Simulation Model
Generator (Simgen) for this test project.

Figure 5-5: XPS BFM User PCORE Simulation Project

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 45
XTP013 EDK 10.1

The Create and Import Peripheral Wizard
R

Simgen creates a simulation\behavioral directory structure under the bfmsim
directory. The behavioral directory contains the HDL wrapper files along with the DO
script files needed to run a behavioral simulation.

8. Click Custom Button 1 in the XPS GUI tool bar. The CIP Wizard configures this
tool bar button when it creates the BFM simulation project. Custom Button 1 initiates
the following:

a. Launches a bash shell to run a make file.

Bus Functional
Compiler (BFC)

b. Using the previously set simulation options properly calls the CoreConnect Bus
Functional Compiler (BFC) to operate on a sample.bfl file (see <project
name>\pcores\
test_ip_v1_00_a\devl\bfmsim\scripts\sample.bfl for more detail).

c. Invokes the simulator with the BFC output command files (INCLUDE or DO files)
depending on the simulator to execute the commands in the sample.bfl file. The
simulator waveform result will be similar that shown in Figure 5-6.

What Just Happened?

The XPS tools just automated a lot of steps for you! Assuming this is your first time
through the process, however, it may seem confusing. Let’s quickly review what just
happened.

1. The CIP Wizard created a set of HDL template files in the
<project_name>\pcores\test_ip_v1_00_a\hdl\vhdl directory.

2. The CIP Wizard created a test project, which isolates your PCORE and allows you to
verify its functionality with the bus before hooking it to a larger system. This project
resides in the <project_name>\pcores\test_ip_v1_00_a\devl\bfmsim
directory.

This test project makes use of several BFMs supplied by the CoreConnect ToolKit. In
this case, there is a model of the processor, bus, memory, and bus monitor, all
connected to your core under development. The clear benefit is that you not only
avoided having to create these models yourself, but XPS also made all the correct
connections automatically. This saved you considerable time.

3. After generating the simulation platform, you can use Custom Button 1 to automate
several, otherwise tedious steps in the simulation process. These steps run the
sample.bfl through the CoreConnect Bus Functional Compiler, and must be
performed to generate the command file the simulator uses. To find more information
associated with these buttons, select Project > Customize Buttons and use the F1 help
on the topic. The location of the make file used is given below.

Figure 5-6: BFM Waveform Simulation Results for sample.bfl @ t=640 ns

http://www.xilinx.com

46 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 5: Creating Your Own Intellectual Property (IP)
R

In addition to compiling the BFL, the make file executed by Custom Button 1 calls the
simulator with the command files to start simulation, simplifying the simulation
launch and compilation process to a single button click.

How Can I Modify IP Created with the CIP Wizard?

The next logical question is how to make future adjustments, given that you will not be
developing IP blocks without additional logic for very long. So, let’s try making some
alterations to your test IP.

Take a Test Drive!
1. In XPS, select File > Open, navigate to the

<project name>\pcores\test_ip_v1_00_a\devl\bfmsim\scripts
directory, and display all files.

2. Open the sample.bfl file.

Bus Functional
Language (BFL)

BFM Script files

Roughly the first 160 or so lines of code set command aliases, making the command
lines more readable. Source and destination memory is populated, and the various
core features are tested. You can add or subtract commands to various sections as your
core requires, or create a completely new BFL command file.

Note: If you create a new BFL file, you must also adjust the bfm_sim_xps.make file under the
bfmsim directory to reflect your desired command file. For more information on the BFL
commands, look in your EDK install area for the file
$XILINX_EDK\third_party\doc\xxxToolkit.pdf, where xxx corresponds to a desired
bus.

In addition to the BFL file, the CIP Wizard creates a corresponding PCORES directory
under the BFMSIM project. Here you’ll find a template for the BFM test bench. You can
add to the template test bench as your core logic requires. This guide doesn’t go into
description on how to add test bench signals and stimulus to this file.

Now that you have a general understanding of how the BFM project can be used, and
of its associated control files, it’s time to add the validated PCORE to the overall
system.

3. Close XPS (File/Exit) and relaunch XPS with your original system from the ISE Project
Navigator by double-clicking on the XPS icon in the Sources Window (Figure 5-7).

X-Ref Target - Figure 5-7

Figure 5-7: Relaunching XPS from the ISE Project Navigator

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 47
XTP013 EDK 10.1

The Create and Import Peripheral Wizard
R

Next, you will add the new IP to the previously created embedded system.

Adding IP to Your Processor System

Not having generated any additional logic, you haven’t changed the peripheral top-level
interface. This guide will treat the test_ip core as if additional user ports were added.
Why? Because additional logic signals are, more often than not, required for use of the
PCORE.

With the assumption that you have added user ports, you should now re-run the CIP
Wizard in the import mode to re-generate the correct EDK interface files (MPD and PAO).
Doing this includes the newly added user ports and ensures that the test_ip peripheral
can be used in XPS.

Take a Test Drive!
Before taking this test drive, let’s do a quick review of where we are in the IP creation
process.

The first time you ran the CIP wizard, you created the test_ip peripheral, set up the bus
interface, and generated template files for it. Then (if you opted to do so) you ran BFM
simulation to verify the basic design of your new peripheral.

Now you will add test_ip to your project, again using the CIP wizard. In the process,
test_ip will be imported to an XPS-appropriate directory and the Platform Format
Specification files (MPD and PAO) will be generated.

For more information platform specification format files, see the Platform Specification
Format Reference Manual at www.xilinx.com/ise/embedded/edk_docs.htm.

Running the CIP Wizard to Re-import test_ip into Your XPS Project

• Open the CIP Wizard (Hardware > Create or Import Peripheral) and click Next.

The values to enter for each wizard screen are shown in the table below. When in
doubt, use the default values.

Wizard Screen Value to Enter

Peripheral Flow Select Import existing peripheral.

Repository or Project Select To an XPS project.

Name and version • Select test_ip from the drop-down list.
• Enable the Use version option and accept 1.00.a.
• If the peripheral already exists, a dialog pops up asking if you

would like to overwrite it. Click Yes.

Source File Types Indicate the types of files that make up the peripheral. Enable the
HDL source files option.

HDL Source Files • Select Use existing Peripheral Analysis Order file (*.pao) as the
way to specify the HDL source files.

• Browse to the
test_ip_v1_00_a\data\test_ip_v1_1_0.pao file location,
and open the file.

http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com

48 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 5: Creating Your Own Intellectual Property (IP)
R

Updating User Repositories to Include test_ip

1. Select Project > Rescan User Repositories.

After XPS completes the scan, a Project Local pcores category appears in the IP
Catalog.

2. Expand the Project Local pcores listing in the IP catalog and double-click the
test_ip peripheral core to add it to the system.

3. With the Bus Interface tab selected in System Assembly View, click the hollow bus
connection symbol to complete the connection to the PLB.

4. Click the Addresses tab in System Assembly View.

5. Click the Generate Addresses button.

6. Generate the system netlist by clicking Hardware > Generate Netlist.

This completes the hardware portion of adding IP to your system.

What’s Next?
You are now ready to create your software platform. The next chapter explains how EDK
handles the software elements of your system and what files it uses to manage and store
data about your embedded applications.

HDL Analysis
Information

This screen shows all the dependent library files and HDL source files
that are needed to compile your peripheral, as well as corresponding
logical libraries into which those files will be compiled.

• You would click Add Files or Add Library if you want to add
more files. For this custom peripheral, the wizard automatically
infers all files required, based on the PAO file.

Bus Interfaces • Select PLBV46 Slave (SPLB).

SPLB : Port This panel allows you to specify additional connections to the SPLB
Bus Connector. Were it necessary to connect additional signals, you
would do it here.

• Because this template design is still empty, click Next.

The SPLB : Parameter This screen defines any special bus interface parameters for your
peripheral.

Identify Interrupt
Signals

In this screen, you can specify any additional interrupts for your core
to use, along with their signal characteristics.

• Accept the defaults specified.

Parameter Attributes Allows you to change parameter settings in the VHDL files produced
earlier by the CIP Wizard.

• Click Next.

Port Attributes Allows you to change port settings in the VHDL files produced
earlier by the CIP wizard.

Finish Click Finish.

Wizard Screen Value to Enter

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 49
XTP013 EDK 10.1

R

Chapter 6

The Software Platform and SDK

Board Support Package
The Board Support Package (BSP) is a collection of files that defines the hardware elements
of your system for each processor. The BSP contains the various embedded software
elements, such as software driver files, selected libraries, standard I/O devices, interrupt
handler routines, and other related features. Consequently, it is easiest to have SDK
generate the BSP after the hardware system is populated with its processors and
peripherals and after the address map is defined.

As with the hardware assembly, SDK allows you to specify all aspects of your software
platform and manage your software applications.

MSS File and Other Software Platform Elements

Microprocessor
Software
Specification (MSS)

The hardware portion of your Test Drive project uses the MHS file to describe the
hardware elements in a high-level form. XPS creates an analogous software system
description in the Microprocessor Software Specification (MSS) file. The MSS file, together
with your software applications, are the principal source files representing the software
elements of your embedded system.

This collection of files, used in conjunction with EDK installed libraries and drivers, and
any custom libraries and drivers for custom peripherals you provide allows SDK to
compile your applications. The compiled software routines are available as an Executable
and Linkable Format (ELF) file. The ELF file is the binary ones and zeros that are run on the
processor hardware. Figure 6-1 shows the files and flow stages that generate the ELF file.

http://www.xilinx.com

50 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 6: The Software Platform and SDK
R

Platform Studio Software Development Kit

SDK Overview

The Platform Studio Software Development Kit (SDK) was designed to facilitate the
development of embedded software application projects. SDK has its own GUI and is
based on the Eclipse open-source tool suite. The Platform Studio SDK is a complementary
program to XPS; that is, from SDK, you can develop the software that the peripherals and
processor(s) elements connected in XPS use.

You must create an SDK project for each software application. The project directory
contains your C/C++ source files, executable output file, and associated utility files such as
the make files used to build the project. Each SDK project directory is typically located
under the XPS project directory tree for the embedded system that the application targets.
Each SDK project produces just one executable file, <project_name>.elf. Therefore,
you may have more than one SDK project targeting a single XPS embedded system.

Take a Test Drive!

Launch SDK and Import Your Test Applications

For this project, you’ll import the applications created earlier, when you ran the BSB
Wizard.

1. Click Software > Launch Platform Studio SDK to open SDK.

Figure 6-1: Elements and Stages of ELF File Generation

Libraries

LibGen

MSS File
system.mss

Object
Files
*.obj

GCC

Source
Code
*.c

Linker

X10589

Executable
 and Linkable
 Format file

*.elf

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 51
XTP013 EDK 10.1

Platform Studio Software Development Kit
R

When SDK opens, the Application Wizard opens (Figure 6-2) to assist in creating a
software application project. (If the wizard does not open automatically, click Xilinx
Tools > Launch Application Wizard.)

2. Select Import XPS Application Projects and click Next.

Note: For future reference, notice that you could also choose to create a new SDK application.

The projects available in XPS are listed with check boxes for importation.

3. Select TestApp_Peripheral and click Finish.

Note: The associated XMP file (top-level XPS project file) tells SDK which processors are
present in the hardware platform and provides a pointer to the libraries for each processor.
Notice that SDK compiles all libraries and generates the BSP automatically.

Adding Test Software for Your Custom IP

Next let’s add some test software for the custom peripheral (test_ip) you created earlier.
This entails doing the following steps.

♦ Locating the software test files for the core.

♦ Importing them into your TestApp_Peripheral application project.

♦ Editing the test_ip_selftest.c file to identify the base address for the
test_ip core (because the TEST_IP_SelfTest routine requires a base address
pointer). To obtain this information, you must refer to the xparameters.h file.

(Does this seem confusing? Don’t worry, you’ll see how it works when you
perform the steps below.)

♦ Rebuilding your projects. (SDK can be set to do this automatically.)

The following Test Drive takes you through the entire process.

Take a Test Drive!

Locating and Importing the Software Test Files

1. Click the C/C++ Projects tab in the upper left of the SDK main window.

Figure 6-2: Platform Studio SDK Project Creation Wizard

http://www.xilinx.com

52 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 6: The Software Platform and SDK
R

2. In the C/C++ Projects Panel, right-click the TestApp_Peripheral project name and
select Import.

3. In the Import dialog, select File system and click Next.

4. Browse to the system\drivers directory under your top-level project and locate the
test_ip_v1_00_a\src directory.

This is where the CIP Wizard created a few C files and a header file for your test_ip
core, (Figure 6-3).

5. Check the boxes for all the source files (test_*.*), and click Finish.

Editing the test_app_peripheral.c File

1. In the C/C++ Projects tab on the left side of the SDK main window, locate the
test_ip_selftest.c file. Double-click the file name to open it.

The test_ip_selftest.c file contains the function definition for a
TEST_IP_SelfTest routine, as shown in Figure 6-4. Notice the parameters this
routine requires.

As you can see, the TEST_IP_SelfTest routine requires a base address pointer,
which you must provide.

You can find the TEST_IP base address value in the xparameters.h file, by doing
the following:

a. In the C/C++ Projects tab, open the ppc440_0_sw_platform/
ppc440_0/include directory to display the xparameters.h file.

Figure 6-3: Importing test_ip Software Files

Figure 6-4: Sample Software Template Created by the CIP Wizard

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 53
XTP013 EDK 10.1

Platform Studio Software Development Kit
R

b. Double-click xparameters.h to open it in the editing window. Search for
TEST_IP_0_BASEADDR, using the File Search dialog, shown in Figure 6-5..

You now have the base address definition information necessary to add the function to
the TestApp_Peripheral.c file.

2. In the TestApp_Peripheral.c file, insert the following line of code before the final
print statement:

TEST_IP_SelfTest(XPAR_TEST_IP_0_BASEADDR);

Your TestApp_Peripheral.c file now looks similar to Figure 6-6.

Rebuilding Your Projects

If the Build automatically option (in the tool bar under Project) is selected, your projects are
updated when you save the TestApp_Peripheral.c file. If not, select Project > Build
Project.

After the build is complete, note the creation of the Debug directory under the
TestApp_Peripheral project. For now, your working ELF file for the project resides
here. Note the ELF file location. You’ll need it later for the Test Drive.

The C/C++ Build configuration settings allow control over the type of project you are
building.

You can get more information in SDK by clicking Help > Help Contents and navigating to
C/C++ Development User Guide > Reference > C/C++ Project Properties > Managed
Make Projects > C/C++ Build > Build Settings.

X-Ref Target - Figure 6-5

Figure 6-5: File Search Dialog

Figure 6-6: Code Insertion for TestApp_Peripheral.c File

http://www.xilinx.com

54 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 6: The Software Platform and SDK
R

Returning to XPS to Complete Your Project
This guide provides Test Drives to take your system through both simulation and
implementation (the creation of a bitstream). To complete your project, you’ll need to
return to XPS and perform a few steps. We’ll continue the Test Drive from there; but first,
we’ll provide a little background information.

Having completed some software development work using SDK, you must select a SW
project to be loaded into block RAM using the Applications tab in XPS. What you select is
determined by the design flow you plan on following.

If you plan to simulate your embedded system, your application needs to be loaded into
block RAM (BRAM). You specify this by marking a block RAM for initialization in the
Applications tab.

Completing the
Project with XPS

Even if you are not planning on simulating your design, you must select a project in XPS to
be marked to initialize BRAMs. It is fine to use boot loop for this. And, even though you
will be using SDK to manage your software projects, this step needs to be performed once.
The reason for this may sound a bit involved, but is important to understand. It has to do
with the integration of the ISE Project Navigator GUI with SDK.

When a project is marked to initialize BRAMs, the Update Bitstream with Processor Data
command in ISE Project Navigator copies the bitstream to the implementation
subdirectory. When that is done, SDK can then access that bitstream and continue to
update it as you modify your software. If you don’t have a software project marked to
initialize BRAMs, then the Update Bitstream with Processor Data command will fail, as
will all further attempts to update that bitstream from SDK.

Let’s take a look at a another scenario that could potentially pose a problem. Suppose two
designers are working on this XPS project, one using XPS and another using SDK. The
designer who saves the project last could overwrite the other designer’s work. To avoid
this situation, XPS identifies the potential conflict and creates a stable file condition that
can be used going forward. Because SDK is the preferred software project manager, XPS
only needs to know the location of the ELF file so that it can be merged with the FPGA for
implementation and simulation.

By looking at the XPS Applications tab information, you can see that in addition to the
software project you just worked on, there are additional projects. Quickly confirm that the
following are present in your project before taking the following Test Drive:

• The default ppc440_0_bootloop project. The boot loop project minimally boots the
processor by having it wake up and execute a single “jump to itself” instruction. It
spins on this instruction until the debugger takes over.

• Projects created by the BSB Wizard, including Project: TestApp_Memory and
Project: TestApp_Peripheral. You may recall that in the BSB Wizard, you
chose to test both memory and other peripherals selected as part of the BSB process.

Perform the steps in the following Test Drive to select and configure the software so it can
be simulated or downloaded to the FPGA or board memory device.

Take a Test Drive!
1. In XPS, select the Applications tab.

2. Right-click the Project: TestApp_Memory application and deselect Mark to
Initialize BRAMs. (You’re going to have the Project: TestApp_Peripheral
application take care of this.)

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 55
XTP013 EDK 10.1

Returning to XPS to Complete Your Project
R

3. Right click on the TestApp Peripheral project in XPS. You'll get the dialog shown in
Figure 6-7.

Note: The TestApp_Peripheral project was created in SDK, and XPS assumes that you
are now actively managing this project from SDK. To work with the TestApp_Peripheral
project, XPS will ask you to change it to an ELF-only project.

4. Select the option Convert XPS application into an ELF-only application.

When you click OK, XPS continues to manage the data with which block RAM is
initialized, but it turns the software project management function over to SDK.

5. Right-click this project to select it as the project to initialize block RAMs, as was done
in the previous step.

You should now see a check mark beside Mark to Initialize BRAMs in the right-click
menu. Your Applications tab will look similar to the one shown in Figure 6-8.

Figure 6-7: XPS ELF File Management Option

http://www.xilinx.com

56 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 6: The Software Platform and SDK
R

6. In the Applications tab, right-click the Executable option in the
TestApp_Peripheral project.

7. Browse to your SDK-created ELF file in the
\SDK_projects\TestApp_Peripheral\Debug directory.

Debug and
production ELF file
locations

Note: A few steps earlier in the Test Drive, the SDK tool placed the ELF file in a Debug directory,
which is for development. When your design moves to a release phase, a different directory
(Release) can be used (depending on the C/C++ Build Project Properties). You can choose whether
or not to use this structure because the file ELF location can be reassigned at anytime. Remember,
that if you do reassign the build property, you must adjust the ELF file location in XPS as well.

What’s Next?
Now that the software and hardware elements are created, they must be tested. This can be
accomplished by downloading to a demo board or through simulation. Because our
system and software application are relatively small, and because not everyone will be
using the same demo board, this guide takes an opportunity to describe the simulation
process.

Figure 6-8: Project Setting for BRAM Initialization

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 57
XTP013 EDK 10.1

R

Chapter 7

Introduction to Simulation in XPS

Before You Begin
Recheck the simulation requirements from “Installation Requirements: What You Need to
Run EDK Tools” in Chapter 1 to be sure the following conditions are satisfied.

• A mixed language simulator (Mentor Graphics ModelSim PE/SE or Mentor Graphics
IUS) is required for the simulation steps.

MXE does not support mixed language simulation. A mixed language simulator is
required as the PPC440 model uses an IP-Protect model. After compilation, this model
will be in a new simulation library called secureip.

• You should already have compiled the simulation libraries. If you haven’t, just follow
the procedure outlined in the XPS help system. To view this help section:

1.Select Help > Help Topics.

2.From the resulting HTML page, navigate through Procedures for Embedded
Processor Design > Simulation > Compiling Simulation Libraries in XPS >
Compiling Simulation Libraries in XPS.

Note: The XPS help system is also available online at:

www.xilinx.com/ise/embedded/edk_docs.htm.

Why Simulate an Embedded Design?
What are the benefits of simulating an embedded design? Let’s take a look:

• Using simulation, you don’t have to wait for hardware to be complete before testing
your software. This provides for facilitated software development, which allows you
to meet more aggressive project deadlines.

The Benefits of
Simulating a Design

• Simulation provides insight into the internal workings of your system. Signals and
register values are more accessible in a simulated system than those in a hardware
design.

• Simulation also allows for complete control of your system. Conditions that may be
difficult to create in a hardware setting are relatively easy to simulate.

As you have seen throughout this guide, XPS automates many mundane design details.
So, you probably won’t be surprised to learn that it does an excellent job of creating the
simulation scripts and Hardware Description Language (HDL) files.

However, for some software designers, it may not be clear how to make use of the final,
simulated project data. To help with that, this chapter takes you on a Test Drive through the
simulation process.

http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com

58 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 7: Introduction to Simulation in XPS
R

EDK Simulation Basics
EDK supports simulation of your embedded system on Mentor Graphics® ModelSim® or
Cadence IUS® logic simulators. Simulation is accomplished by exporting VHDL or Verilog
HDL models of your embedded hardware platform design. The models include block
RAM (BRAM) memory peripherals that you can initialize with your embedded software
Executable and Linkable Format (ELF) file. EDK can generate your choice of:

• A behavioral model (based on your hardware platform specification alone)

• A post-synthesis structural model (simulating after the Generate Netlist step)

• A complete post-place-and-route, timing-accurate model

Simulation Stages Verification through behavioral, structural, and timing simulation can be performed at
specific points in your design process, as illustrated in Figure 7-1. The simulation model
generation tool, Simgen, creates and configures specified HDL design files.

The simulators that support EDK require you to compile the HDL libraries before you can
use them for design simulation. The advantages of compiling HDL libraries include speed
of execution and efficient use of memory. It is assumed that your libraries are compiled at
this point. If you need to compile the libraries, see “Before Starting” in Chapter 1.

For more information about simulation, including descriptions of behavioral, structural,
and timing simulation, see the “Simulation Model Generator (Simgen)” in the Embedded
System Tools Reference Manual at www.xilinx.com/ise/embedded/edk_docs.htm.

Simulation Considerations
When simulating your design, keep the following points in mind.

• Ensure that certain system values are specified.

• It is advantageous to change some settings to improve the simulation runtime.

Global Settings to Specify

Global reset, tristate nets, and clock signals all must be set to some value. Xilinx Integrated
Software Environment (ISE™) tools provide detailed information on how to simulate your
VHDL or Verilog design. Refer to the “Simulating Your Design” chapter in the ISE
Synthesis and Simulation Design Guide for more information. A PDF version of this
document is located at:
http://toolbox.xilinx.com/docsan/xilinx10/books/docs/sim/sim.pdf

Figure 7-1: FPGA Design Simulation Stages

Behavioral
Simulation

Functional Simulation

Design
Entry

Design
Synthesis

Design
Netlist

Design
Implementation

Implemented
Design Netlist

Timing
Simulation

Structural
Simulation

UG111_01_051005

http://www.xilinx.com/ise/embedded/edk_docs.htm
http://toolbox.xilinx.com/docsan/xilinx10/books/docs/sim/sim.pdf
http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 59
XTP013 EDK 10.1

Helper Scripts
R

System Behavior and Improving Simulation Times

You should also be aware of system behavior. HDL simulation is slow when compared
with a design running on hardware. To improve the simulation runtime, you can adjust
some parameters for simulation-only purposes. For example, our Test Drive system
contains an RS232_UART and a DCM. In the Test Drive section of this chapter, you’ll see
how to improve simulation time by increasing the baud rate for the UART and eliminating
the DCM reset. (In a real-life system, you should always reset the DCM. For this example
design, we're more concerned with getting illustrative results with the shortest amount of
simulation time).

Helper Scripts
Xilinx has put a good deal of effort into making system simulation easier to perform. The
tools understand how your system is connected and how all the HDL design files relate
behind-the-scenes. The tools also have the ability to create simulator instruction files for
the design under test. When you initiate the XPS tool bar command Simulation > Generate
Simulation HDL Files, all this capability is enabled automatically.

In addition to this, XPS includes Helper scripts to simplify simulator usage. Helper scripts
are generated at the test harness (or test bench) level to set up the simulation. When run,
the Helper script performs initialization functions and provides instructions for creating
waveform and list windows (Mentor Graphics ModelSim-only) using waveform and list
scripts. The top-level scripts invoke instance-specific scripts.

Simplifying
Simulation by Using
Helper Scripts

Under the simulation\<simulation type> directory, you will find several command
scripts for running simulation. The system_setup.do file is the starting point from
which all other scripts are called. Commands in the scripts can be customized as desired.
Editing the top-level waveform (system_wave.do) or list scripts allows you to select
signals for inclusion or exclusion. They are all shown by default. For timing simulations,
only top-level ports are displayed.

In XPS under Project > Project Options, in the HDL and Simulation tab there is a selection
to instruct XPS to generate a test bench. If this option is enabled, the test bench will have
instructions to perform the reset of your system. If the option is not enabled, a helper script
is created in system_setup.do called rst that sets up your simulation clocks and
resets the system.

Restrictions
The simulation utility, Simgen, does not provide simulation models for external memories,
and it does not have automated support for simulation models. External memory models
must be instantiated and connected in the simulation test bench and initialized according
to the model specifications.

 Take a Test Drive!
This Test Drive takes you through simulating your system and allows you to observe the
hardware and software response of the recently created IP block to requests it receives.

Simulation Setup

For the RS232_UART peripheral, simulating at a 9600 baud rate requires extended
simulation times, during most of which there is little happening. Accelerating the baud

http://www.xilinx.com

60 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 7: Introduction to Simulation in XPS
R

rate by a factor of 100 reduces the time spent simulating by a similar amount. It also
condenses the transition area for data, allowing you to assess the simulated behavior of the
system more easily.

For the DCM, we will eliminate the time to acquire lock by tying the relevant input to the
proc_sys_reset_0 block high.

To accelerate the UART baud rate:

Accelerating UART
Baud Rate

1. Launch SDK if not already open.

2. Open TestApp_Periperal.c (It may be necessary to first select Bus Interfaces.)

3. From the drop-down box, select the highest value possible, 921600, and click OK.

4. In the first line of code following main, change the baud rate of 9600 to 921600.

5. Save the file.

To accelerate DCM Reset Behavior:

Accelerating DCM
Reset Behavior

1. In XPS System Assembly View, click the Ports tab.

2. Expand the proc_sys_reset_0 block (see Figure 7-2).

3. Modify the connection to the DCM_Locked port by connecting it to net_vcc.

4. Examine the MHS file to ensure that the change made in the GUI was written into the
MHS file.

Running Simulation
1. Select Project > Project Options, and under the HDL and Simulation tab, verify that

Behavioral simulation is selected. If not, select it.

2. Select Simulation > Generate Simulation HDL Files to launch the Simgen tool and
generate the simulation HDL files and helper scripts.

When you invoke the command to generate the simulation HDL files, XPS creates the
simulation\behavioral directory structure.

3. Use a file browser to locate and view the contents of the \behavioral directory. Here
you find two primary file types: DO files and VHDL files.

X-Ref Target - Figure 7-2

Figure 7-2: Ports Tab with proc_sys_reset_0 block Expanded

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 61
XTP013 EDK 10.1

Restrictions
R

a. Open the system.vhd file in a text editor.

This is your top-level file for the device under test. It contains all the signals and
port mappings that comprise the design you are working with at this point. Scan
through and familiarize yourself with the content of this file. When finished, close
the file.

b. Open the system_setup.do file.

The system_setup.do
Macro File

This macro file automates many of the steps executed during simulation. You see
the results of this file after completing just a few steps. Note that the alias
commands call additional DO files. You could add your own aliases to this file as
well for custom simulation operations. Note the w alias for calling the do
system_wave.do file. You will be asked to edit this file next. When finished with
system_setup.do close this file and open system_wave.do.

c. The system_wave.do file displays the signals in your design. Many signals are
generated by this file. To provide a little more focus for our simulation, comment
out, using the pound (#) sign, the following lines of code:

do xps_bram_if_cntlr_1_wave.do
do xps_bram_if_cntlr_1_bram_wave.do
do Push_Buttons_5Bit_wave.do
do jtagppc_cntlr_0_wave.do

When you’re finished with these modifications, save and close this file.

Before starting simulation it would be helpful to know more about the actual software
implementation that will occur. A quick disassembly of the previously generated ELF file
provides information about the executable address and assembly instructions that run the
code.

1. In XPS, select Project > Launch EDK Shell.

The EDK shell is a cygwin-based command window you can use to run EDK specific
commands.

2. At the EDK shell command prompt, change your directory:

cd SDK_projects/TestApp_Peripheral/Debug/

This is where your ELF file resides.

Tip: You can use the tab key to automatically populate the path.

3. To perform the disassembly, enter the following command:

powerpc-eabi-objdump -S TestApp_Peripheral.elf >>
TestApp_Peripheral.dis

Disassembly
command

This command calls the PowerPC object file display routine (powerpc-eabi-
objdump) with intermixed source and disassembly information. The output is sent to
the TestApp_Peripheral.dis file.

4. When the process is complete, close the EDK shell and return to XPS.

For more information about the powerpc-eabi-objdump routine, see the “GNU
Utilities” appendix in the Embedded System Tools Reference Manual at
www.xilinx.com/ise/embedded/edk_docs.htm.

Specific information about the switches that powerpc-eabi-objdump supports can
be found by running powerpc-eabi-objdump –H on the command line.

5. In XPS, click Simulation > Launch HDL Simulator.

http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com

62 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 7: Introduction to Simulation in XPS
R

Providing you have an EDK-supported simulator installed, it appears with the
system_setup.do file invoked. The simulator is now ready to compile and load
your design.

6. Assuming you are using ModelSim, at the prompt, enter the following commands:

c Compile the designs.

s Load the design.

w Set up the waveform window.

rst Toggle the reset port and set the clock frequency to 100 MHz.

run 3ms Simulation for 3 ms.

7. While your simulation is running, launch SDK and open the
TestApp_Peripheral.c file, located in the
SDK_projects\TestApp_Peripheral directory.

Using the
TestApp_Peripheral
Files

8. In this file, find the first interaction between the processor and the general purpose
I/O. This should be line 69 of the source file where we're reading the GPIO status
register (see Figure 7-3).

9. Use a text editor to open the TestApp_Peripheral.dis file and search for the same
line of code:
status = GpioInputExample(XPAR_PUSH_BUTTONS_5BIT_DEVICE_ID,
&DataRead);.

There you’ll find assembly code that appears similar to the following (actual address
values may vary):

10. In your simulator, perform a signal search on FFFFC220.

Figure 7-3: TestApp_Peripheral - Reading GPIO Peripheral

status = GpioInputExample(XPAR_PUSH_BUTTONS_5BIT_DEVICE_ID, &DataRead); C/C++ Source Code
ffffc3f8: 38 81 00 08 addi r4,r1,8

ffffc220: 38 60 00 00 li r3,0

ffffc224: 48 00 05 99 bl ffffc7bc
<GpioInputExample>

Memory Address
for Code Execution

Machine Code
Execution Values

Assembly Operands

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 63
XTP013 EDK 10.1

Restrictions
R

Using the PLB signal plb_abus for the FFFFC220 value allows you to zoom in on a
location at which to begin looking for execution of the GpioInputExample
subroutine.

Armed with the disassembled source and the simulation waveform output (Figure 7-4),
you’ll be better able to continue stepping through the design and better able to understand
its internal operation, as well as the hardware and software interaction.

Simulation Output Now that your simulation is wrapped up, you need to go to XPS and in the Applications
Tab mark Default: ppc440_0_bootloop. Initialize the block RAMs by right-clicking, and
checking the menu that comes up.

Note: As previously mentioned, ISE needs to have a block RAM initialization file selected so that
the.bit file will be copied to the proper location for SDK.

Figure 7-4: Simulation Output Results for test_ip

http://www.xilinx.com

64 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 7: Introduction to Simulation in XPS
R

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 65
XTP013 EDK 10.1

R

Chapter 8

Implementing and Downloading Your Design

Implementing the Design
Having completed the design entry phase, you can now implement your design in
hardware. We touched on this subject in Chapter 4, “The Embedded Hardware Platform,”
and as part of the earlier Test Drives, you generated your hardware netlist (see “Simulation
Setup,” page 59). As a result, XPS did most of the essential work required for
implementation. To take the design from concept to reality, you must perform a few
additional steps. This chapter provides information on what the tools have automated and
on how to adjust those settings to suit your final design needs.

Netlist Generation Review

The MPD file
contains all available
ports and hardware
parameters for a
peripheral

Earlier you were prompted to select the Hardware > Generate Netlist menu item. This
command causes the XPS Platform Generator (Platgen) utility to read the design platform
information contained in the Microprocessor Hardware Specification (MHS) file, along
with the IP attribute settings available from the respective Microprocessor Peripheral
Definition (MPD) files. The output files from Platgen are Hardware Description Language
(HDL) files, which can be found at <project name>\hdl\.

More information about the MPD file can be found in the Platform Specification Format
Reference Manual, available at www.xilinx.com/ise/embedded/edk_docs.htm.

When you select Hardware > Generate Netlist, the Xilinx Synthesizer Technology (XST)
synthesizes these HDL design files to produce the IP netlist (NGC) files, as shown in
Figure 8-1.

http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com

66 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 8: Implementing and Downloading Your Design
R

For your general reference: the resulting NGC files reside at
<project name>\implementation. Note that you don’t need to change these files.

ISE uses the NGC netlist files during design implementation, which occurs when you
invoke the Generate Programming File from the ISE Project Navigator.

When you double-click Generate Program File, the following flow takes place, illustrated
in Figure 8-2.

The NGC files and system constraints are processed through the remaining ISE tools
(NGDBuild, MAP, PAR, and TRACE) and BITGEN from the ISE Project Navigator GUI.

The only Project Navigator file needed, in addition to the top-level processor design, is the
User Constraints File (UCF). This file contains your design constraints (see Figure 8-3). If
you are not familiar with FPGA design, the use of design constraints enables the tools to

Figure 8-1: Elements and Stages of Generating a Hardware Netlist

PlatGenSystem IP
*.mpd

EDIF IP
Netlists

*.ngc

MHS File
system.mhs

Synthesis

HDL
Source
Code
*.v
*.vhd

X10516

X-Ref Target - Figure 8-2

Figure 8-2: Elements and Stages of Generating a Hardware Bitstream

EDIF IP
Netlists

*.ngc

Bit File
(bitstream)

*.bit

system.ucf ISE/Project Navigator

X10583

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 67
XTP013 EDK 10.1

Netlist Generation Review
R

identify and satisfy real-world limitations. Example constraints could be as simple as clock
information or pin placement, or they could be complex placement and timing parameters
that satisfy critical logic paths.

The Test Drive project provided in this tutorial is a processor-centric design; that is, it
consists only of the embedded processor platform. There is no external logic associated
with the processor system. Therefore, only a few constraints need to be added before
bitstream generation.

Locating the UCF file You already have a UCF file because when you ran the BSB Wizard, you selected a small set
of constraints that were based on the board you selected. When you completed the Base
System Builder (BSB) Wizard steps, the constraints were automatically generated. The
UCF is located in the directory <project name>\system\data. More information
about these constraints can be found in the ISE tools documentation Constraints Guide,
available at: www.xilinx.com/support/software_manuals.htm.

Take A Test Drive!

Generating the Netlist and Bitstream

1. From SDK, open TestApp_Peripheral.c and change the baud rate back to 9600.

2. Save the file.

3. Select Project/Add Source in the ISE Project Navigator, and go to the system/data
subdirectory.

4. Select the system.ucf file.Click OK in the dialog box, then OK again in the "Adding
Source Files . . ." confirmation window.

Your display should now look similar to the display shown in Figure 8-3.

5. While still in Project Navigator, select File/Open . . ." and open the same ucf that was
just added, so you can view some constraints. Note that it will have both pinout and
timing constraints.

6. Double-click Generate Programming File and observe the progress of your design's
implementation in the Console Window.

7. When the Programming File generation completes, double-click Update Bitstream
With Processor Data in the ISE Project Navigator GUI.

X-Ref Target - Figure 8-3

Figure 8-3: Sample User Constraints File

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

68 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 8: Implementing and Downloading Your Design
R

This sets the file system up appropriately so that SDK can find the bitstream that you
will download in the next Test Drive.

FPGA Configuration

To boot up an embedded processor system, both hardware and software system
components must be downloaded to the FPGA and program memory, respectively. We
will show how that is done in SDK. Figure 8-4 shows the elements and stages of generating
the embedded system bitstream, which is executed by selecting Configuration > Bitstream
Settings in EDK.

Downloading the
Hardware and
Software System
Components

During the prototype or development phase, you can download the hardware bitstream
and software Executable and Linkable Format (ELF) file images by connecting a JTAG
cable from your host computer to the JTAG port on your development board.

The Device Configuration > Download Bitstream menu command in SDK programs the
FPGA with the bitstream. For software downloading: you can initialize software into the
bitstream if it fits inside FPGA internal block RAM (BRAM) memory, or you can use the
software debug tools, such as the XPS Software Development Kit (SDK), to download your
program to the board.

X-Ref Target - Figure 8-4

Figure 8-4: Generating the Embedded System Bitstream

Bit File
(bitstream)

*.bit

system.bit
JTAG

Data2MEM

Hardware

X10584

Executable
 and Linkable
 Format file

*.elf

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 69
XTP013 EDK 10.1

Netlist Generation Review
R

The complete EDK program flow is shown in Figure 8-5.

Take a Test Drive!
1. At this point, your design netlists and bitstream are generated, the software is

configured in the TestApp_Peripheral project.

2. In SDK, Select Device Configuration > Bitstream settings to merge the FPGA bitstream
and TestAppPeripheral.elf files into a single bitstream file.

3. Ensure that the TestApp_Peripheral is selected. If it is not, select it now.

4. Ensure the serial and JTAG cables are connected, the development board is powered
on, and a serial terminal is connected properly and set to the 9600 baud rate.

5. Click Device Configuration > Program FPGA. (Make sure that you executed the
Update Bitstream with Processor Data command from the ISE Project Navigator.)

After the bitstream is loaded to the board, an output on your serial terminal window
shows the testing status of the peripherals included in your design. An output result
from the shell test_ip peripheral you created earlier is included also.

X-Ref Target - Figure 8-5

Figure 8-5: Elements and Stages of XPS and EDK Leading to FPGA Configuration

Libraries

PlatgenSystem IP
*.mpd

EDIF IP
Netlists

*.ngc

Synthesis

Libgen

MSS File
system.mss

Hardware >
Generate Netlist

Bit File
(bitstream)

*.bit

system.ucf ISE/XFlow

Project Navigator >
Generate Programming File

Executable
 and Linkable
 Format file

*.elf

system.bit JTAG

Data2MEM

Hardware

Object
Files
*.obj

GCC

Linker

X10585

SDK
XPS

XPS

http://www.xilinx.com

70 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 8: Implementing and Downloading Your Design
R

-- Entering main() --

Running GpioInputExample() for Push_Buttons_Position...
GpioInputExample PASSED. Read data:0x0

* User Peripheral Self Test

Soft reset test...
- write 0x0000000A to software reset register
- soft reset passed

User logic slave module test...
- write 1 to slave register 0 word 0
- read 1 from register 0 word 0
- slave register write/read passed

Packet FIFO test...
- reset write packet FIFO to initial state
- reset read packet FIFO to initial state
- push data to write packet FIFO
0x00000001
0x00000002
0x00000003
0x00000004

- write packet FIFO is not full
- number of entries is expected 4
- pop data out from read packet FIFO
0x00000001
0x00000002
0x00000003
0x00000004

- read packet FIFO is empty
- number of entries is expected 0
- write/read packet FIFO passed

Interrupt controller test...
- IP (user logic) interrupt status : 0x00000000
- clear IP (user logic) interrupt status register
- Device (peripheral) interrupt status : 0x00000000
- clear Device (peripheral) interrupt status register
- enable all possible interrupt(s)
- write/read interrupt register passed

-- Exiting main() --

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 71
XTP013 EDK 10.1

R

Chapter 9

Debugging the Design

So far, the Test Drive system has been fairly simple. However, as additional IP elements are
added and more software is written, the system inevitably becomes more complex. In
addition, because the system elements are encapsulated inside the FPGA and because the
signals necessary for sufficient design analysis are inaccessible, debug could potentially
become a challenge. But Xilinx has anticipated these difficulties and offers several methods
and tools that allow you good visibility into both the hardware and software portions of
your design, such as:

The Xilinx Debugging
Tools

• Hardware debug capability using the Xilinx Microprocessor Debugger (XMD).

• Platform Studio Software Development Kit (SDK) software debugger communicates
to the target processor through the XMD interface.

• The ChipScope™ Pro tool, which uses integrated logic analyzer hardware cores to
communicate with the target design inside most Xilinx devices.

The Xilinx debug capabilities associated with Platform Studio tend to see the greatest level
of use but may be the least understood. This chapter provides you with insight into this
crucial function.

http://www.xilinx.com

72 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 9: Debugging the Design
R

Xilinx MicroProcessor Debugger
The Xilinx MicroProcessor Debugger (XMD) is a design software utility that facilitates
debugging software programs you create. XMD also helps you verify systems that use the
microprocessors offered by Xilinx. You can use XMD to debug programs that run on a
hardware board or that use the cycle-accurate Instruction Set Simulator (ISS). Figure 9-1
and Figure 9-2 show how XMD interacts with the target processor and the debug (host)
software in use.
X-Ref Target - Figure 9-1

Figure 9-1: XMD PowerPC System Connection

X-Ref Target - Figure 9-2

Figure 9-2: XMD MicroBlaze System Connection

X10586

Host Software
GDB

Remote
Protocol

Tcl/Terminal Interface

TCP/IP

JTAG

Host Software

PPC440 Debug Port
PowerPCTM System

powerpc-eabi-gdb XMD

X10587

Host Software
GDB

Remote
Protocol

Tcl/Terminal Interface

TCP/IP

JTAGUART

UART
JTAG
UART

MDM

MicroBlaze

OPB Bus

Host Software

mb-gdb

XMD

MB Cycle-Accurate
Instruction Set Simulator

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 73
XTP013 EDK 10.1

SDK Software Debugger
R

XMD can stand on its own, but is usually used in conjunction with other utilities, such as
the XPS or SDK GUIs. Typically, XMD connects to the target processor through a JTAG
connection to the device under test. Communication and control are achieved using the
TCP/IP protocol. In the images above, depending on the microprocessor you have selected
(PowerPC or MicroBlaze) and on how you configured the system, XMD passes
information from the device under test to the GUI (SDK) about its status. XMD also
controls the operation of the processor, based on the requests you entered in SDK.

For more information about XMD, see the XMD chapter of the Embedded System Tools
Reference Manual, available at www.xilinx.com/ise/embedded/edk_docs.htm

SDK Software Debugger
Platform Studio SDK presents an integrated environment for seamless debugging of
embedded targets. Both MicroBlaze and PowerPC Executable and Linkable Format (ELF)
files can be debugged with SDK.

Software debuggers such as the one provided in SDK enable you to monitor the execution
of a program by controlling it through start, stop, and pause (breakpoint) operations. The
software debugger may also allow some run-time control over program operation through
monitoring and adjustment capabilities of the memory and/or variable values.

ChipScope Pro Tools
ChipScope Pro tools include several utilities that are integrated into a single application.

• ChipScope Pro Analyzer provides device configuration, trigger setup, and trace
display for ChipScope Pro cores.

• ChipScope Pro Cores hardware debugging is accomplished through bus and arbitrary
signal value monitoring, along with discrete control of inputs and output using the
JTAG connection.

The available cores include:

♦ Integrated Controller Pro (ICON): Provides a communication path between the
JTAG port of the target FPGA and up to 15 other cores (IBA, VIO, ATC2, or
MTC2).

♦ Integrated Logic Analyzer (ILA): A customizable logic analyzer core that
monitors any internal signal in your design.

♦ Integrated Bus Analyzer (IBA): A specialized logic analyzer core designed to
debug embedded systems that contain IBM CoreConnect bus interconnects,
Processor Local Bus v4.6, Processor Local Bus v3.4, or On-Chip Peripheral Bus.

♦ Virtual Input/Output (VIO): A core that can both monitor and drive internal
FPGA signals in real time.

♦ Agilent Trace Core 2 (ATC2): A debug capture core specifically designed to work
with the latest generation Agilent logic analyzers. This core provides an external
logic analyzer access to internal FPGA nets.

For more information about ChipScope Pro Tools features, benefits, and associated core
descriptions, see the ChipScope Pro Software and Cores User Guide available at
www.xilinx.com/literature/literature-chipscope.htm.

http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com/literature/literature-chipscope.htm
http://www.xilinx.com

74 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 9: Debugging the Design
R

Platform Debug
Using the Debug
Configuration Wizard

Used individually, you can see that the utilities described in the last several sections of this
chapter are certainly helpful. However, when they are combined, they provide an even
greater advantage—they give you a simultaneous and complete picture of hardware and
software interactions within your embedded design. This ability is crucial to isolating the
source of a bug.

Overview

The XPS Platform Studio Debug Configuration Wizard automates hardware and software
debug configuration tasks common to most designs.

• To open the Debug Configuration Wizard, select Debug > Debug Configuration.

The wizard has the following primary screens.

System Explorer

The System Explorer (No. 1 in Figure 9-3) shows the options for selecting the debug utility
that you want to configure. Use these options to navigate through and configure debug
features for the available ChipScope cores and processors.

Information Tab

The Information tab (No. 2 in Figure 9-3) contains information about desired operations.

Console Window

The Console Window (No. 3 in Figure 9-3) displays output, warning, error, and
information messages from the Debug Configuration wizard.

Figure 9-3: Debug Configuration Wizard

1

2

3

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 75
XTP013 EDK 10.1

Platform Debug
R

Hardware and Software Co-Debug

The Debug Configuration Wizard facilitates hardware and software co-debugging to
accomplish the following:

• Connects IBA trig_out to the processor stop signal so the IBA can place the
processor in the debug Halt mode. In short, this ChipScope signal stops processor
execution.

Whenever the processor is halted, the software debugger registers the state of the
processor when it was stopped, allowing a hardware trigger to be correlated to the
activity in software. Depending on the bus in use, the delay between the processor stop
time and the registration of this event in the debugger can be as short as 11 clock cycles.
As a result, it is highly likely that the software has stopped during the same subroutine
that caused the hardware trigger event.

• Connects the C405DBCSTOPACK processor halted signal to one of the many IBA
trig_in ports so that the halting of the processor can trigger the IBA to record
samples. This condition registers with the bus analyzer any time the processor stops
its execution.

A debug event, such as a breakpoint occurrence, forces the processor to halt its
execution. When this occurs, the bus analyzer registers the condition and presents all
samples gathered up to that point, allowing you to correlate a software event to a state
in hardware.

Note: This applies only to the PPC405. MicroBlaze works in a similar fashion.

• Connects the processor instruction bus C405DBGWBIAR[0:29] to the IBA trig_in
port so that the IBA can record the sequence of instructions. The processor and clock
must operate at the same clock frequency. With this setting, a trace review is possible.
The depth of the trace buffer is limited by the amount of on-chip BRAM available.

Note: This applies only to the PPC405. MicroBlaze works in a similar fashion.

Let’s take another Test Drive and put these concepts into practice.

Take a Test Drive!

Run the Debug Configuration Wizard in XPS

1. To Launch the Debug Configuration Wizard in XPS, click Debug > Debug
Configuration.

2. In the wizard, select Add ChipScope Peripheral (located below the System Explorer
pane). The Add New ChipScope Peripheral dialog appears.

3. Select the option To monitor PLB v4.6 bus signals (adding PLB IBA). This adds a
ChipScope integrated bus analyzer core for the PLB bus.

4. Click OK.

The configuration pane changes so you can specify the core configuration.

a. Ensure the core is set up to monitor the PLB bus control, address, and data
read/write signals.

b. Select the check box to Enable Hardware/Software Co-debug.

c. Accept the default value of 1024 samples.

http://www.xilinx.com

76 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 9: Debugging the Design
R

5. Click the Advanced tab in the Debug Configuration pane.

Review (but do not change) the available options. These provide finer control over
what the ChipScope logic analyzer monitors and on what it will trigger. For more
information on how to use these features and parameters, refer to the ChipScope Pro
Software and Cores User Guide available at www.xilinx.com/literature/literature-
chipscope.htm.

6. Click OK to close the wizard.

Review the Results

Notice that the Debug Configuration Wizard has done a lot of work for you. It has made
connections appropriate to your design, which you can view in XPS and in your
Microprocessor Hardware Specification (MHS) file.

1. Select the Ports tab in the System Assembly View and notice the two new cores:
chipscope_plbv46_iba_0 and chipscope_icon_0.

If you expand the ports associated with these cores you’ll see that the Debug
Configuration Wizard made the necessary connections for you. See Figure 9-4.

2. If you click the Projects tab and open the MHS file, you cans see that the wizard also
added the chipscope_plbv46_iba connections:

PORT chipscope_icon_control = chipscope_plbv46_iba_0_icon_ctrl
PORT PLB_Clk = sys_clk_s
PORT iba_trig_out = ppc440_0_DBGC440UNCONDDEBUGEVENT_chipscope

Notice that the output from the IBA core is connected to the
DBGC440UNCONDDEBUGEVENT input on the PowerPC core. A high pulse on this signal
stops the processor.

ChipScope processor
stop

Below is the signal required to create the hardware-software cross triggering
capability:

DBGC440UNCONDDEBUGEVENT
Indicates that external debug logic (in this case the presence of a trigger event in
ChipScope) is causing an unconditional debug event.

Generate the Bitstream in XPS and Observe Platform Debugging

After adding the two new cores, you must create a new hardware bitstream.

1. In XPS, choose Hardware > Generate Netlist.

X-Ref Target - Figure 9-4

Figure 9-4: Debug Configuration Wizard Automatic Connections

X10886

JTAG /
Boundary

Scan Signals

ICON Core

15

chipscope_plbv46_iba

icon_control

iba_trig_out
SYS_RST

PPC
DBGC440UNCONDDEBUGEVENT

PLB_CLK

sys_clk_s

tdi_in
reset_in
shift_in
update_in
sel_in
drck_in

control

1do_out

http://www.xilinx.com/literature/literature-chipscope.htm
http://www.xilinx.com/literature/literature-chipscope.htm
http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 77
XTP013 EDK 10.1

Platform Debug
R

2. If you haven't already done so, go to the Applications Tab of XPS and mark Default:
ppc440_0_bootloop as the application to initialize block RAMs.

3. In Project Navigator, double-click Generate Programming File.

4. In Project Navigator, double-click Update Bitstream with Processor Data.

5. In SDK, to observe the Platform debugging operation, add a while(1) statement to
your TestApp_Peripheral application so the function runs continuously by doing
the following:

a. Open the TestApp_Peripheral.c file.

b. In the file, look for the int main (void) { statement on line 45.

c. Add the following code to the file (shown in bold type):

int main (void) {

while(1){

print("-- Entering main() --/r/n");

d. Locate the print("-- Exiting main() --/r/n"); statement near the end
of the file.

e. Add the closing bracket as follows:

print("--Exiting main() --/r/n");
}

return 0;
}

f. Save your file.

Download the Bitstream and Run Debug in SDK
Note: You must have a board connected to perform the following steps.

1. In SDK, select Device Configuration > Bitstream Settings, and set the specified ELF file
to boot loop.

2. Select Device Configuration > Program FPGA to download the bitstream.

3. Ensure that your TestApp_Peripheral project is selected. From the Run menu
select the Debug option. This launches the Debug Configuration dialog.

4. Click the New button at the bottom of the dialog. TestApp_Peripheral is
automatically populated for the project type, and the C/C++ application can be found
at Debug\TestApp_Peripheral.elf.

5. Select the Debug button at the bottom of the dialog to download the design to the
board and switch to the Debug Perspective.

6. In the Debug Perspective, click on the Resume icon and observe the output in the
serial terminal window. The software routine runs in a continuous loop.

http://www.xilinx.com

78 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 9: Debugging the Design
R

ChipScope Pro Setup

1. Launch ChipScope Pro Analyzer.

2. Click the Open Cable/Search JTAG Chain icon, circled in Figure 9-5.

A dialog appears, showing all of the devices in the JTAG chain.

3. Click OK.

ChipScope CDC file
location

4. To launch the Signal Import dialog, choose File > Import from the menu.

5. Click Select New File and browse to
<project directory>\system\implementation\chipscope_plbv46_iba_0_wrapper

Here you will find the CDC file cs_coregen_chipscope_plbv46_iba_0.cdc.

6. Open this file in the ChipScope Logic Analyzer.

Waveform Window Setup

The ChipScope Logic Analyzer contains four main windows: New Project, Signals: DEV:4
Unit:0, Trigger Setup, and Waveform. In the following steps, you will work in the
Waveform window.

1. In the Waveform window, select the first signal. Using the shift key, also select the last
signal in the list to highlight all signals.

2. Right-click and select Remove from Viewer.

3. Drag the PLB_ABUS signal from the Signals pane to the Waveform pane. Do the same
with the PLB_SrdDBus, and PLB_wrDBus signals.

Your completed waveform window will look similar to Figure 9-6.

4. With this basic configuration setup, click the Trigger Now icon in the ChipScope
Pro tool bar.

Figure 9-5: Open Cable/Search JTAG Chain Icon

Figure 9-6: ChipScope Pro Logic Analyzer Waveform Setup

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 79
XTP013 EDK 10.1

Platform Debug
R

This first instructs the ChipScope Pro Logic analyzer to sample system data for the
previously configured signals and then provides a quick check that the ChipScope Pro
logic analyzer, the ChipScope Pro IP elements, and the JTAG connection between these
two items is capturing data.

5. By expanding the Match Units M0 through M4 in the Trigger setup window, you can
see how the debug wizard has defined signals that are useful for advanced debugging.
To define complex trigger conditions, you can enter specific PLB address values
(match unit M2), PLB write and read data values (match units 3 and 4, respectively).

6. Set up the trigger and match units, as shown in Figure 9-7.

When you select Apply Settings and Arm Trigger, you trigger on a UART access, which
in turn asserts the IBA trigger out, and the processor is halted.

Platform Debug: Triggering Between Hardware and Software

ChipScope allows you to combine conditions from all or some of the match units, so you
can, for example, trigger on a specific data value that has been read or written at a specific
address (as described in step 6 in the previous section). When ChipScope recognizes a
complex trigger condition, the external trigger can then be passed to the processor core,
halting code execution. In this manner, you can use a combination of SDK and ChipScope
cross-triggering to help isolate and identify unexpected system behavior.

This concludes the hardware and software debug exercise as well as this version of the
EDK Concepts, Tools, and Techniques guide.

We hope you have found this guide useful as you progressed from the beginning stages of
XPS project development, through simulation, device download, and finally into both
hardware and software debug.

X-Ref Target - Figure 9-7

Figure 9-7: ChipScope Trigger and Match Units

http://www.xilinx.com

80 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter 9: Debugging the Design
R

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 81
XTP013 EDK 10.1

R

Appendix A

More About BFM Simulation

When you took the Bus Functional Model (BFM) Simulation Test Drive in Chapter 5,
“Creating Your Own Intellectual Property (IP),” you were asked to click User Command
Button 1 . The tools then ran through several make file scripts, which resulted in the
simulation shown in Figure 5-3, page 42. This appendix provides a more detailed look at
what happened, as well as information on how you can modify the routines for your own
purposes.

Use a file explorer tool and navigate to the
<project_name>\pcores\test_ip_v1_00_a\devl\bfmsim\scripts directory,
shown in Figure A-1. Here you’ll find a few scripts with which you should become familiar
if you would like to modify the BFM for your own purposes.

Figure A-1: BFM Directory and Files

http://www.xilinx.com

82 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter :
R

XPS created the sample.bfl file as part of the Create and Import Peripheral (CIP) Wizard
process described in Chapter 5, “Creating Your Own Intellectual Property (IP),” As the
name implies, sample.bfl is a sample bus functional language (BFL) script file. The
sample.bfl file is the one you modify or recreate as another file for your own uses. With
this understanding, open the sample.bfl file in a text editor to review what has been
created for you. Again, this file contains some initial alias commands for human
readability. Look for them in the BFL file in the order shown below:

1. Byte enable aliases.

2. Unit Under Test (UUT) aliases. These correspond to the same values given in the
drivers\test_ip_v1_00_a\src\test_ip.h file. This file was also created as
part of the CIP Wizard process. Note that although the base address may be different
from the one in your actual system, the various register, interrupt and FIFO address
values are the same because they are all set relative to the base address in the
test_ip.h file.

3. Data aliases create readable values for numbers that may be used as part of the BFL.

4. Communication aliases are assigned for common operations in the BFL.

With the aliases set, sample.bfl begins to initialize various elements with the following
type of command:

set_device(path = [string], device_type = [string])

5. The set_device command selects an Processor Local Bus (PLB) device model to
initialize.

6. The path string is based on the various *_wrapper files created as part of the BFM
structure. The string specifies the path of the model within the BFM system and test
bench hierarchy.

7. The device_type specifies the type of model being initialized (plb or opb _device
or _arbiter designations).

Having specified this information, memory is initialized using the mem_init command.
With memory values initialized, testing of the UUT can be begin. The sample.bfl
systematically tests the various elements you selected to include as part of the Create and
Import Peripheral (CIP) Wizard process. The resultant waveforms first appear at
approximately 640 ns in the BFM simulation output. (See Figure 5-3, page 42.)

With this understanding of the BFL, it should be fairly easy to see the connection between
the sample.bfl and the sample.do files.

8. As part of the make file script, which was run when User Command Button 1 was
invoked earlier, the BFL file is passed through the Bus Functional Compiler (BFC).

9. The BFC translates the input BFL into a simulator command file. Because this file is
machine-generated, there is not much need to review the sample.do file, other than
to note that there is a 1:6 translation (roughly) that occurs from the BFL input
commands to the resulting output simulation command file.

The benefit to you: a substantial time savings compared to manual entry of the
simulator commands!

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 83
XTP013 EDK 10.1

R

Appendix B

Glossary

BBD file
Black Box Definition file. The BBD file lists the netlist files used by a
peripheral.

BFL
Bus Functional Language.

BFM
Bus Functional Model.

BIT File
Xilinx® Integrated Software Environment (ISE™) Bitstream file.

BitInit
The Bitstream Initializer tool. It initializes the instruction memory of
processors on the FPGA and stores the instruction memory in
blockRAMs in the FPGA.

block RAM (BRAM)
A block of random access memory built into a device, as distinguished
from distributed, LUT based random access memory.

BMM file
Block Memory Map file. A BMM file is a text file that has syntactic
descriptions of how individual block RAMs constitute a contiguous
logical data space. Data2MEM uses BMM files to direct the translation
of data into the proper initialization form. Since a BMM file is a text
file, it is directly editable.

BSB
Base System Builder. A wizard for creating a complete design in Xilinx
Platform Studio (XPS). BSB is also the file type used in the Base System
Builder.

BSP
See Standalone BSP.

http://www.xilinx.com

84 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter :
R

D

DCM
Digital Clock Manager

DCR
Device Control Register.

DLMB
Data-side Local Memory Bus. See also: LMB.

DMA
Direct Memory Access.

DOPB
Data-side On-chip Peripheral Bus. See also: OPB.

DRC
Design Rule Check.

DSPLB
Data-side Processor Local Bus. See also: ISPLB.

E

EDIF file
Electronic Data Interchange Format file. An industry standard file
format for specifying a design netlist.

EDK
Xilinx Embedded Development Kit.

ELF file
Executable and Linkable Format file.

EMC
External Memory Controller.

EST
Embedded System Tools.

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 85
XTP013 EDK 10.1

R

F

FATfs (XilFATfs)
LibXil FATFile System. The XilFATfs file system access library
provides read/write access to files stored on a Xilinx SystemACE
CompactFlash or IBM microdrive device.

FPGA
Field Programmable Gate Array.

FSL
MicroBlaze Fast Simplex Link. Unidirectional point-to-point data
streaming interfaces ideal for hardware acceleration. The MicroBlaze
processor has FSL interfaces directly to the processor.

G

GDB
GNU Debugger.

GPIO
General Purpose Input and Output. A 32-bit peripheral that attaches
to the on-chip peripheral bus.

H

Hardware Platform
Xilinx FPGA technology allows you to customize the hardware logic
in your processor subsystem. Such customization is not possible using
standard off-the-shelf microprocessor or controller chips. Hardware
platform is a term that describes the flexible, embedded processing
subsystem you are creating with Xilinx technology for your
application needs.

HDL
Hardware Description Language.

I

IBA
Integrated Bus Analyzer.

IDE
Integrated Design Environment.

http://www.xilinx.com

86 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter :
R

ILA
Integrated Logic Analyzer.

ILMB
Instruction-side Local Memory Bus. See also: LMB.

IOPB
Instruction-side On-chip Peripheral Bus. See also: OPB.

IPIC
Intellectual Property Interconnect.

IPIF
Intellectual Property Interface.

ISA
Instruction Set Architecture. The ISA describes how aspects of the
processor (including the instruction set, registers, interrupts,
exceptions, and addresses) are visible to the programmer.

ISC
Interrupt Source Controller.

ISE
Xilinx ISE Project Navigator project file.

ISPLB
Instruction-side Peripheral Logical Bus. See also: DSPLB.

ISS
Instruction Set Simulator.

J

JTAG
Joint Test Action Group.

L

Libgen
Library Generator sub-component of the Xilinx Platform Studio
technology.

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 87
XTP013 EDK 10.1

R

LibXil Standard C Libraries
EDK libraries and device drivers provide standard C library functions,
as well as functions to access peripherals. Libgen automatically
configures the EDK libraries for every project based on the MSS file.

LibXil File
A module that provides block access to files and devices. The LibXil
File module provides standard routines such as open, close, read, and
write.

LibXil Profile
A software intrusive profile library that generates call graph and
histogram information of any program running on a board.

LMB
Local Memory Bus. A low latency synchronous bus primarily used to
access on-chip block RAM. The MicroBlaze processor contains an
instruction LMB bus and a data LMB bus.

M

MDD file
Microprocessor Driver Description file.

MDM
Microprocessor Debug Module.

MFS
LibXil Memory File System. The MFS provides user capability to
manage program memory in the form of file handles.

MHS file
Microprocessor Hardware Specification file. The MHS file defines the
configuration of the embedded processor system including
buses,peripherals, processors, connectivity, and address space.

MLD file
Microprocessor Library Definition file.

MPD file
Microprocessor Peripheral Definition file. The MPD file contains all of
the available ports and hardware parameters for a peripheral.

MSS file
Microprocessor Software Specification file.

http://www.xilinx.com

88 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter :
R

N

NCF file
Netlist Constraints file.

NGC file
The NGC file is a netlist file that contains both logical design data and
constraints. This file replaces both EDIF and NCF files.

NGD file
Native Generic Database file. The NGD file is a netlist file that
represents the entire design.

NGO File
A Xilinx-specific format binary file containing a logical description of
the design in terms of its original components and hierarchy.

NPI
Native Port Interface.

O

OCM
On Chip Memory.

OPB
On-chip Peripheral Bus.

P

PACE
Pinout and Area Constraints Editor.

PAO file
Peripheral Analyze Order file. The PAO file defines the ordered list of
HDL files needed for synthesis and simulation.

PBD file
Processor Block Diagram file.

Platgen
Hardware Platform Generator sub-component of the Platform Studio
technology.

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 89
XTP013 EDK 10.1

R

PLB
Processor Local Bus.

PROM
Programmable ROM.

PSF
Platform Specification Format. The specification for the set of data
files that drive the EDK tools.

S

SDF file
Standard Data Format file. A data format that uses fields of fixed
length to transfer data between multiple programs.

SDK
Software Development Kit.

SDMA
Soft Direct Memory Access

Simgen
The Simulation Generator sub-component of the Platform Studio
technology.

Software Platform
A software platform is a collection of software drivers and, optionally,
the operating system on which to build your application. Because of
the fluid nature of the hardware platform and the rich Xilinx and
Xilinx third-party partner support, you may create several software
platforms for each of your hardware platforms.

SPI
Serial Peripheral Interface.

Standalone BSP
Standalone Board Support Package. A set of software modules that
access processor-specific functions. The Standalone BSP is designed
for use when an application accesses board or processor features
directly (without an intervening OS layer).

SVF File
Serial Vector Format file.

http://www.xilinx.com

90 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter :
R

U

UART
Universal Asynchronous Receiver-Transmitter.

UCF
User Constraints File.

V

VHDL
VHSIC Hardware Description Language.

VP
Virtual Platform.

VPgen
The Virtual Platform Generator sub-component of the Platform Studio
technology.

X

XBD File
Xilinx Board Definition file.

XCL
Xilinx CacheLink. A high performance external memory cache
interface available on the MicroBlaze processor.

Xilkernel
The Xilinx Embedded Kernel, shipped with EDK. A small, extremely
modular and configurable RTOS for the Xilinx embedded software
platform.

XMD
Xilinx Microprocessor Debugger.

XMK
Xilinx Microkernel. The entity representing the collective software
system comprising the standard C libraries, Xilkernel, Standalone BSP,
LibXil MFS, LibXil File, and LibXil Drivers.

XMP File
Xilinx Microprocessor Project file. This is the top-level project file for
an EDK design.

http://www.xilinx.com

EDK Concepts, Tools & Techniques www.xilinx.com 91
XTP013 EDK 10.1

R

XPS
Xilinx Platform Studio. The GUI environment in which you can
develop your embedded design.

XST
Xilinx Synthesis Technology.

Z

ZBT
Zero Bus Turnaround™.

http://www.xilinx.com

92 www.xilinx.com EDK Concepts, Tools & Techniques
XTP013 EDK 10.1

Chapter :
R

http://www.xilinx.com

	EDK Concepts, Tools, and Techniques
	Table of Contents
	Schedule of Figures
	About This Guide
	Additional Resources
	Conventions
	Typographical
	Online Document

	Introduction
	Welcome
	Take a Test Drive!
	Additional Documentation

	How EDK Simplifies Embedded Processor Design
	Integrated Software Environment
	Embedded Development Kit

	How Do the Tools Expedite the Design Process?
	Before Starting

	Creating a New Project
	The Base System Builder (BSB)
	Why Should I Use BSB?
	What You Can Do in the BSB Wizard
	Take a Test Drive!

	Note on BSB and Custom Boards
	What’s Next?

	Xilinx Platform Studio
	What is XPS?
	The XPS GUI
	Project Information Area

	Take a Test Drive!
	System Assembly View

	Take a Test Drive!
	Take a Test Drive!
	Console Window

	XPS Tools
	Take a Test Drive!

	XPS Directory Structure
	Directories

	Take a Test Drive!
	What’s Next?

	The Embedded Hardware Platform
	What’s in a Hardware Platform?
	Hardware Platform Development in Xilinx Platform Studio
	The MHS File

	Take a Test Drive!
	The Hardware Platform in System Assembly View
	What’s Next?

	Creating Your Own Intellectual Property (IP)
	IP Creation Overview
	How to Do It: Use the CIP Wizard!

	The Create and Import Peripheral Wizard
	What You Need to Know Before Running the CIP Wizard

	Take a Test Drive!
	What Just Happened?

	Take a Test Drive!
	Take a Test Drive!
	Take a Test Drive!
	Take a Test Drive!
	What’s Next?

	The Software Platform and SDK
	Board Support Package
	MSS File and Other Software Platform Elements
	Platform Studio Software Development Kit
	Take a Test Drive!
	Adding Test Software for Your Custom IP

	Take a Test Drive!
	Returning to XPS to Complete Your Project
	Take a Test Drive!
	What’s Next?

	Introduction to Simulation in XPS
	Before You Begin
	Why Simulate an Embedded Design?
	EDK Simulation Basics
	Simulation Considerations
	Global Settings to Specify
	System Behavior and Improving Simulation Times

	Helper Scripts
	Restrictions
	Take a Test Drive!
	Simulation Setup
	Running Simulation

	Implementing and Downloading Your Design
	Implementing the Design
	Netlist Generation Review
	Take A Test Drive!
	Take a Test Drive!

	Debugging the Design
	Xilinx MicroProcessor Debugger
	SDK Software Debugger
	ChipScope Pro Tools
	Platform Debug
	Overview
	Hardware and Software Co-Debug

	Take a Test Drive!

	More About BFM Simulation
	Glossary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

